Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism

Autores
Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.
Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Dorr, Ricardo Alfredo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Fil: Gutiérrez, Facundo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Politi, María Teresa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Cátedra de Fisiología; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Materia
Aquaporin
Membrane
Tension
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1704

id CONICETDig_ca1f66f7081767874e7d5644cf9cea2a
oai_identifier_str oai:ri.conicet.gov.ar:11336/1704
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanismOzu, MarceloDorr, Ricardo AlfredoGutiérrez, FacundoPoliti, María TeresaToriano, Roxana MabelAquaporinMembraneTensionhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;Fil: Dorr, Ricardo Alfredo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Gutiérrez, Facundo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;Fil: Politi, María Teresa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;Fil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Cátedra de Fisiología; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Biophysical Society2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1704Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel; Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism; Biophysical Society; Biophysical Journal; 104; 1; 1-2013; 85-950006-34951542-0086enginfo:eu-repo/semantics/altIdentifier/url/http://ac.els-cdn.com/S0006349512050655/1-s2.0-S0006349512050655-main.pdf?_tid=97db4b84-45cc-11e5-a065-00000aacb35e&acdnat=1439918252_12aebad0aa5a1ee761680e433a95ea1finfo:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540253/pdf/main.pdfinfo:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.bpj.2012.11.3818info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:00Zoai:ri.conicet.gov.ar:11336/1704instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:00.817CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
title Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
spellingShingle Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
Ozu, Marcelo
Aquaporin
Membrane
Tension
title_short Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
title_full Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
title_fullStr Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
title_full_unstemmed Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
title_sort Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
dc.creator.none.fl_str_mv Ozu, Marcelo
Dorr, Ricardo Alfredo
Gutiérrez, Facundo
Politi, María Teresa
Toriano, Roxana Mabel
author Ozu, Marcelo
author_facet Ozu, Marcelo
Dorr, Ricardo Alfredo
Gutiérrez, Facundo
Politi, María Teresa
Toriano, Roxana Mabel
author_role author
author2 Dorr, Ricardo Alfredo
Gutiérrez, Facundo
Politi, María Teresa
Toriano, Roxana Mabel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Aquaporin
Membrane
Tension
topic Aquaporin
Membrane
Tension
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.
Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Dorr, Ricardo Alfredo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Fil: Gutiérrez, Facundo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Politi, María Teresa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Cátedra de Fisiología; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
description This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1704
Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel; Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism; Biophysical Society; Biophysical Journal; 104; 1; 1-2013; 85-95
0006-3495
1542-0086
url http://hdl.handle.net/11336/1704
identifier_str_mv Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel; Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism; Biophysical Society; Biophysical Journal; 104; 1; 1-2013; 85-95
0006-3495
1542-0086
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ac.els-cdn.com/S0006349512050655/1-s2.0-S0006349512050655-main.pdf?_tid=97db4b84-45cc-11e5-a065-00000aacb35e&acdnat=1439918252_12aebad0aa5a1ee761680e433a95ea1f
info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540253/pdf/main.pdf
info:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.bpj.2012.11.3818
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Biophysical Society
publisher.none.fl_str_mv Biophysical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613684794490880
score 13.070432