Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism
- Autores
- Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.
Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Dorr, Ricardo Alfredo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Fil: Gutiérrez, Facundo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Politi, María Teresa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;
Fil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Cátedra de Fisiología; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina; - Materia
-
Aquaporin
Membrane
Tension - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/1704
Ver los metadatos del registro completo
id |
CONICETDig_ca1f66f7081767874e7d5644cf9cea2a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/1704 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanismOzu, MarceloDorr, Ricardo AlfredoGutiérrez, FacundoPoliti, María TeresaToriano, Roxana MabelAquaporinMembraneTensionhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;Fil: Dorr, Ricardo Alfredo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Gutiérrez, Facundo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;Fil: Politi, María Teresa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;Fil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Cátedra de Fisiología; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Biophysical Society2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1704Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel; Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism; Biophysical Society; Biophysical Journal; 104; 1; 1-2013; 85-950006-34951542-0086enginfo:eu-repo/semantics/altIdentifier/url/http://ac.els-cdn.com/S0006349512050655/1-s2.0-S0006349512050655-main.pdf?_tid=97db4b84-45cc-11e5-a065-00000aacb35e&acdnat=1439918252_12aebad0aa5a1ee761680e433a95ea1finfo:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540253/pdf/main.pdfinfo:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.bpj.2012.11.3818info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:00Zoai:ri.conicet.gov.ar:11336/1704instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:00.817CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism |
title |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism |
spellingShingle |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism Ozu, Marcelo Aquaporin Membrane Tension |
title_short |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism |
title_full |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism |
title_fullStr |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism |
title_full_unstemmed |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism |
title_sort |
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism |
dc.creator.none.fl_str_mv |
Ozu, Marcelo Dorr, Ricardo Alfredo Gutiérrez, Facundo Politi, María Teresa Toriano, Roxana Mabel |
author |
Ozu, Marcelo |
author_facet |
Ozu, Marcelo Dorr, Ricardo Alfredo Gutiérrez, Facundo Politi, María Teresa Toriano, Roxana Mabel |
author_role |
author |
author2 |
Dorr, Ricardo Alfredo Gutiérrez, Facundo Politi, María Teresa Toriano, Roxana Mabel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Aquaporin Membrane Tension |
topic |
Aquaporin Membrane Tension |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments. Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Fil: Dorr, Ricardo Alfredo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina; Fil: Gutiérrez, Facundo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Fil: Politi, María Teresa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Fil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Cátedra de Fisiología; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina; |
description |
This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/1704 Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel; Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism; Biophysical Society; Biophysical Journal; 104; 1; 1-2013; 85-95 0006-3495 1542-0086 |
url |
http://hdl.handle.net/11336/1704 |
identifier_str_mv |
Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel; Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism; Biophysical Society; Biophysical Journal; 104; 1; 1-2013; 85-95 0006-3495 1542-0086 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ac.els-cdn.com/S0006349512050655/1-s2.0-S0006349512050655-main.pdf?_tid=97db4b84-45cc-11e5-a065-00000aacb35e&acdnat=1439918252_12aebad0aa5a1ee761680e433a95ea1f info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540253/pdf/main.pdf info:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.bpj.2012.11.3818 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Biophysical Society |
publisher.none.fl_str_mv |
Biophysical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613684794490880 |
score |
13.070432 |