Dynamics of Phosphorus in sediments of a naturally acidic lake

Autores
Temporetti, Pedro Felix; Snodgrass, Kimberley; Pedrozo, Fernando Luis
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The mechanisms which controls the fixation and/or release of P in sediment of an extremely acidic lake (pH = 2.0 to 3.0) and its response to the influence of eutrophic urban waste water were investigated. The results, in the chemical composition, in the mineralogy of the sediment and in the material as obtained from sediment traps, show that the lake sediments are mainly volcanic material reflecting volcanic features of the basin. The sedimentation rate calculated for the lake (2.510−2 mg m−2 day−1) was higher than that observed in other similar glacial lakes in both Andean Patagonia and also elsewhere in the world. The Total Phosphorus concentration in sediments was higher than figures reported by other authors for mining acid lakes, and the main fraction of P was found associated with organic matter. There was no control by Fe or Al on P, because both are in solution at pH < 3.0. It was concluded that changes in the natural input of nutrients (derivatives of Copahue volcano fluid, the discharge of sewage, or basin run-off) are responsible for a high concentration of SRP and N-NH4+ in the lake. Laboratory experiments showed that sediments have no ability to retain phosphorus and a continuous release of P from the sediments into the water column was observed. The assays where the pH was artificially increased showed that the P still remains in solution until at least pH 7.0. It was concluded that changes in the natural input of nutrients due to: 1) the volcanic fluids, 2) the increase in sewage charges, or 3) surface runoff upstream, maintain a high trophic state with high concentrations of dissolved P and N-NH4+, although the threshold of neutral pH in the lake is exceeded. This study will enable a better understanding about of the mechanism of release/fixation of phosphorus in acidic sediments in order to assist in making decisions regarding the conservation and management of this natural environment.
Fil: Temporetti, Pedro Felix. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina
Fil: Snodgrass, Kimberley. State University Of Montana. Department Of Earth Sciences; Estados Unidos
Fil: Pedrozo, Fernando Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina
Materia
Sediments
Phosphorus Release
Acidic Lake
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6721

id CONICETDig_c9c71be715fadb3543f321e9f89776e5
oai_identifier_str oai:ri.conicet.gov.ar:11336/6721
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamics of Phosphorus in sediments of a naturally acidic lakeTemporetti, Pedro FelixSnodgrass, KimberleyPedrozo, Fernando LuisSedimentsPhosphorus ReleaseAcidic Lakehttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1The mechanisms which controls the fixation and/or release of P in sediment of an extremely acidic lake (pH = 2.0 to 3.0) and its response to the influence of eutrophic urban waste water were investigated. The results, in the chemical composition, in the mineralogy of the sediment and in the material as obtained from sediment traps, show that the lake sediments are mainly volcanic material reflecting volcanic features of the basin. The sedimentation rate calculated for the lake (2.510−2 mg m−2 day−1) was higher than that observed in other similar glacial lakes in both Andean Patagonia and also elsewhere in the world. The Total Phosphorus concentration in sediments was higher than figures reported by other authors for mining acid lakes, and the main fraction of P was found associated with organic matter. There was no control by Fe or Al on P, because both are in solution at pH < 3.0. It was concluded that changes in the natural input of nutrients (derivatives of Copahue volcano fluid, the discharge of sewage, or basin run-off) are responsible for a high concentration of SRP and N-NH4+ in the lake. Laboratory experiments showed that sediments have no ability to retain phosphorus and a continuous release of P from the sediments into the water column was observed. The assays where the pH was artificially increased showed that the P still remains in solution until at least pH 7.0. It was concluded that changes in the natural input of nutrients due to: 1) the volcanic fluids, 2) the increase in sewage charges, or 3) surface runoff upstream, maintain a high trophic state with high concentrations of dissolved P and N-NH4+, although the threshold of neutral pH in the lake is exceeded. This study will enable a better understanding about of the mechanism of release/fixation of phosphorus in acidic sediments in order to assist in making decisions regarding the conservation and management of this natural environment.Fil: Temporetti, Pedro Felix. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; ArgentinaFil: Snodgrass, Kimberley. State University Of Montana. Department Of Earth Sciences; Estados UnidosFil: Pedrozo, Fernando Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; ArgentinaElsevier2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6721Temporetti, Pedro Felix; Snodgrass, Kimberley; Pedrozo, Fernando Luis; Dynamics of Phosphorus in sediments of a naturally acidic lake; Elsevier; International Journal of Sediment Research; 28; 1; 1-2013; 90-1021001-6279enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1001627913600219info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/S1001-6279(13)60021-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:57Zoai:ri.conicet.gov.ar:11336/6721instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:57.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamics of Phosphorus in sediments of a naturally acidic lake
title Dynamics of Phosphorus in sediments of a naturally acidic lake
spellingShingle Dynamics of Phosphorus in sediments of a naturally acidic lake
Temporetti, Pedro Felix
Sediments
Phosphorus Release
Acidic Lake
title_short Dynamics of Phosphorus in sediments of a naturally acidic lake
title_full Dynamics of Phosphorus in sediments of a naturally acidic lake
title_fullStr Dynamics of Phosphorus in sediments of a naturally acidic lake
title_full_unstemmed Dynamics of Phosphorus in sediments of a naturally acidic lake
title_sort Dynamics of Phosphorus in sediments of a naturally acidic lake
dc.creator.none.fl_str_mv Temporetti, Pedro Felix
Snodgrass, Kimberley
Pedrozo, Fernando Luis
author Temporetti, Pedro Felix
author_facet Temporetti, Pedro Felix
Snodgrass, Kimberley
Pedrozo, Fernando Luis
author_role author
author2 Snodgrass, Kimberley
Pedrozo, Fernando Luis
author2_role author
author
dc.subject.none.fl_str_mv Sediments
Phosphorus Release
Acidic Lake
topic Sediments
Phosphorus Release
Acidic Lake
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The mechanisms which controls the fixation and/or release of P in sediment of an extremely acidic lake (pH = 2.0 to 3.0) and its response to the influence of eutrophic urban waste water were investigated. The results, in the chemical composition, in the mineralogy of the sediment and in the material as obtained from sediment traps, show that the lake sediments are mainly volcanic material reflecting volcanic features of the basin. The sedimentation rate calculated for the lake (2.510−2 mg m−2 day−1) was higher than that observed in other similar glacial lakes in both Andean Patagonia and also elsewhere in the world. The Total Phosphorus concentration in sediments was higher than figures reported by other authors for mining acid lakes, and the main fraction of P was found associated with organic matter. There was no control by Fe or Al on P, because both are in solution at pH < 3.0. It was concluded that changes in the natural input of nutrients (derivatives of Copahue volcano fluid, the discharge of sewage, or basin run-off) are responsible for a high concentration of SRP and N-NH4+ in the lake. Laboratory experiments showed that sediments have no ability to retain phosphorus and a continuous release of P from the sediments into the water column was observed. The assays where the pH was artificially increased showed that the P still remains in solution until at least pH 7.0. It was concluded that changes in the natural input of nutrients due to: 1) the volcanic fluids, 2) the increase in sewage charges, or 3) surface runoff upstream, maintain a high trophic state with high concentrations of dissolved P and N-NH4+, although the threshold of neutral pH in the lake is exceeded. This study will enable a better understanding about of the mechanism of release/fixation of phosphorus in acidic sediments in order to assist in making decisions regarding the conservation and management of this natural environment.
Fil: Temporetti, Pedro Felix. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina
Fil: Snodgrass, Kimberley. State University Of Montana. Department Of Earth Sciences; Estados Unidos
Fil: Pedrozo, Fernando Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina
description The mechanisms which controls the fixation and/or release of P in sediment of an extremely acidic lake (pH = 2.0 to 3.0) and its response to the influence of eutrophic urban waste water were investigated. The results, in the chemical composition, in the mineralogy of the sediment and in the material as obtained from sediment traps, show that the lake sediments are mainly volcanic material reflecting volcanic features of the basin. The sedimentation rate calculated for the lake (2.510−2 mg m−2 day−1) was higher than that observed in other similar glacial lakes in both Andean Patagonia and also elsewhere in the world. The Total Phosphorus concentration in sediments was higher than figures reported by other authors for mining acid lakes, and the main fraction of P was found associated with organic matter. There was no control by Fe or Al on P, because both are in solution at pH < 3.0. It was concluded that changes in the natural input of nutrients (derivatives of Copahue volcano fluid, the discharge of sewage, or basin run-off) are responsible for a high concentration of SRP and N-NH4+ in the lake. Laboratory experiments showed that sediments have no ability to retain phosphorus and a continuous release of P from the sediments into the water column was observed. The assays where the pH was artificially increased showed that the P still remains in solution until at least pH 7.0. It was concluded that changes in the natural input of nutrients due to: 1) the volcanic fluids, 2) the increase in sewage charges, or 3) surface runoff upstream, maintain a high trophic state with high concentrations of dissolved P and N-NH4+, although the threshold of neutral pH in the lake is exceeded. This study will enable a better understanding about of the mechanism of release/fixation of phosphorus in acidic sediments in order to assist in making decisions regarding the conservation and management of this natural environment.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6721
Temporetti, Pedro Felix; Snodgrass, Kimberley; Pedrozo, Fernando Luis; Dynamics of Phosphorus in sediments of a naturally acidic lake; Elsevier; International Journal of Sediment Research; 28; 1; 1-2013; 90-102
1001-6279
url http://hdl.handle.net/11336/6721
identifier_str_mv Temporetti, Pedro Felix; Snodgrass, Kimberley; Pedrozo, Fernando Luis; Dynamics of Phosphorus in sediments of a naturally acidic lake; Elsevier; International Journal of Sediment Research; 28; 1; 1-2013; 90-102
1001-6279
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1001627913600219
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/S1001-6279(13)60021-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269982261510144
score 13.13397