An idealized study of near equatorial river plumes
- Autores
- Palma, Elbio Daniel; Matano, Ricardo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamics of near equatorial river plumes (NERPs) are investigated using a highly idealized model. The spreading of a NERP from an eastern boundary is characterized by a continuous shedding of westward propagating eddies. This process transfers the bulk of the freshwater discharge to the deep ocean, thus distinguishing NERPs from their midlatitude counterparts. In the long-term limit, a NERP can be rationalized as a β-plume emanating from a coastal source. The evolution of NERPs in an unstratified basin is quite different from that in a stratified one. The spin-up in an unstratified basin is characterized by the formation of an anticyclonic bulge, which spreads westward thus creating a density stratification that favors the subsequent development of smaller and faster moving secondary eddies. The collision of the secondary eddies with the leading bulge arrests the effects of mixing thus allowing the further spreading of the buoyancy anomaly. In a stratified basin, the generation of anticyclonic eddies is accompanied by a concurrent generation of cyclones, which pump saltier waters to the surface hence leading to smaller sea surface salinity (SSS) anomalies. NERPs are sensitive to variations of the freshwater flux (Qfw) and the geomorphological setting. Larger Qfw generates bigger eddies, which spread at a rate proportional to the square root of the normalized flux. Wide shelves allow the interaction of the eddies with the bottom, thus promoting a cyclonic shift of the axis of the eddy train. The inclination of the coast affects the dynamical balance controlling the near-field behavior of NERPs.
Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
Fil: Matano, Ricardo. State University of Oregon; Estados Unidos - Materia
-
Near Equatorial River Plumes
Numerical Modeling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39368
Ver los metadatos del registro completo
id |
CONICETDig_c989c400ad7d006796e7a13fa0526727 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39368 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An idealized study of near equatorial river plumesPalma, Elbio DanielMatano, RicardoNear Equatorial River PlumesNumerical Modelinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The dynamics of near equatorial river plumes (NERPs) are investigated using a highly idealized model. The spreading of a NERP from an eastern boundary is characterized by a continuous shedding of westward propagating eddies. This process transfers the bulk of the freshwater discharge to the deep ocean, thus distinguishing NERPs from their midlatitude counterparts. In the long-term limit, a NERP can be rationalized as a β-plume emanating from a coastal source. The evolution of NERPs in an unstratified basin is quite different from that in a stratified one. The spin-up in an unstratified basin is characterized by the formation of an anticyclonic bulge, which spreads westward thus creating a density stratification that favors the subsequent development of smaller and faster moving secondary eddies. The collision of the secondary eddies with the leading bulge arrests the effects of mixing thus allowing the further spreading of the buoyancy anomaly. In a stratified basin, the generation of anticyclonic eddies is accompanied by a concurrent generation of cyclones, which pump saltier waters to the surface hence leading to smaller sea surface salinity (SSS) anomalies. NERPs are sensitive to variations of the freshwater flux (Qfw) and the geomorphological setting. Larger Qfw generates bigger eddies, which spread at a rate proportional to the square root of the normalized flux. Wide shelves allow the interaction of the eddies with the bottom, thus promoting a cyclonic shift of the axis of the eddy train. The inclination of the coast affects the dynamical balance controlling the near-field behavior of NERPs.Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaFil: Matano, Ricardo. State University of Oregon; Estados UnidosBlackwell Publishing Ltd2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39368Palma, Elbio Daniel; Matano, Ricardo; An idealized study of near equatorial river plumes; Blackwell Publishing Ltd; Journal of Geophysical Research: Oceans; 122; 5; 5-2017; 3599-36202169-9291CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/2016JC012554info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JC012554info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:03Zoai:ri.conicet.gov.ar:11336/39368instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:04.132CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An idealized study of near equatorial river plumes |
title |
An idealized study of near equatorial river plumes |
spellingShingle |
An idealized study of near equatorial river plumes Palma, Elbio Daniel Near Equatorial River Plumes Numerical Modeling |
title_short |
An idealized study of near equatorial river plumes |
title_full |
An idealized study of near equatorial river plumes |
title_fullStr |
An idealized study of near equatorial river plumes |
title_full_unstemmed |
An idealized study of near equatorial river plumes |
title_sort |
An idealized study of near equatorial river plumes |
dc.creator.none.fl_str_mv |
Palma, Elbio Daniel Matano, Ricardo |
author |
Palma, Elbio Daniel |
author_facet |
Palma, Elbio Daniel Matano, Ricardo |
author_role |
author |
author2 |
Matano, Ricardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Near Equatorial River Plumes Numerical Modeling |
topic |
Near Equatorial River Plumes Numerical Modeling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The dynamics of near equatorial river plumes (NERPs) are investigated using a highly idealized model. The spreading of a NERP from an eastern boundary is characterized by a continuous shedding of westward propagating eddies. This process transfers the bulk of the freshwater discharge to the deep ocean, thus distinguishing NERPs from their midlatitude counterparts. In the long-term limit, a NERP can be rationalized as a β-plume emanating from a coastal source. The evolution of NERPs in an unstratified basin is quite different from that in a stratified one. The spin-up in an unstratified basin is characterized by the formation of an anticyclonic bulge, which spreads westward thus creating a density stratification that favors the subsequent development of smaller and faster moving secondary eddies. The collision of the secondary eddies with the leading bulge arrests the effects of mixing thus allowing the further spreading of the buoyancy anomaly. In a stratified basin, the generation of anticyclonic eddies is accompanied by a concurrent generation of cyclones, which pump saltier waters to the surface hence leading to smaller sea surface salinity (SSS) anomalies. NERPs are sensitive to variations of the freshwater flux (Qfw) and the geomorphological setting. Larger Qfw generates bigger eddies, which spread at a rate proportional to the square root of the normalized flux. Wide shelves allow the interaction of the eddies with the bottom, thus promoting a cyclonic shift of the axis of the eddy train. The inclination of the coast affects the dynamical balance controlling the near-field behavior of NERPs. Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina Fil: Matano, Ricardo. State University of Oregon; Estados Unidos |
description |
The dynamics of near equatorial river plumes (NERPs) are investigated using a highly idealized model. The spreading of a NERP from an eastern boundary is characterized by a continuous shedding of westward propagating eddies. This process transfers the bulk of the freshwater discharge to the deep ocean, thus distinguishing NERPs from their midlatitude counterparts. In the long-term limit, a NERP can be rationalized as a β-plume emanating from a coastal source. The evolution of NERPs in an unstratified basin is quite different from that in a stratified one. The spin-up in an unstratified basin is characterized by the formation of an anticyclonic bulge, which spreads westward thus creating a density stratification that favors the subsequent development of smaller and faster moving secondary eddies. The collision of the secondary eddies with the leading bulge arrests the effects of mixing thus allowing the further spreading of the buoyancy anomaly. In a stratified basin, the generation of anticyclonic eddies is accompanied by a concurrent generation of cyclones, which pump saltier waters to the surface hence leading to smaller sea surface salinity (SSS) anomalies. NERPs are sensitive to variations of the freshwater flux (Qfw) and the geomorphological setting. Larger Qfw generates bigger eddies, which spread at a rate proportional to the square root of the normalized flux. Wide shelves allow the interaction of the eddies with the bottom, thus promoting a cyclonic shift of the axis of the eddy train. The inclination of the coast affects the dynamical balance controlling the near-field behavior of NERPs. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39368 Palma, Elbio Daniel; Matano, Ricardo; An idealized study of near equatorial river plumes; Blackwell Publishing Ltd; Journal of Geophysical Research: Oceans; 122; 5; 5-2017; 3599-3620 2169-9291 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39368 |
identifier_str_mv |
Palma, Elbio Daniel; Matano, Ricardo; An idealized study of near equatorial river plumes; Blackwell Publishing Ltd; Journal of Geophysical Research: Oceans; 122; 5; 5-2017; 3599-3620 2169-9291 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/2016JC012554 info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JC012554 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Blackwell Publishing Ltd |
publisher.none.fl_str_mv |
Blackwell Publishing Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614042962886656 |
score |
13.070432 |