The upstream spreading of bottom-trapped plumes

Autores
Matano, Ricardo; Palma, Elbio Daniel
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of
bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region.
Fil: Matano, Ricardo. Oregon State University; Estados Unidos
Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina
Materia
Numerical Models
River Plumes
Continental Shelf
Coastal models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/27950

id CONICETDig_8c8de0314765dfedd9f75dc7e08860cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/27950
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The upstream spreading of bottom-trapped plumesMatano, RicardoPalma, Elbio DanielNumerical ModelsRiver PlumesContinental ShelfCoastal modelshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of<br />bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region.Fil: Matano, Ricardo. Oregon State University; Estados UnidosFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaAmerican Meteorological Society2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27950Matano, Ricardo; Palma, Elbio Daniel; The upstream spreading of bottom-trapped plumes; American Meteorological Society; Journal of Physical Oceanography; 40; 7-2010; 1631-16500022-3670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1175/2010JPO4351.1info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/pdf/10.1175/2010JPO4351.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:08Zoai:ri.conicet.gov.ar:11336/27950instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:08.466CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The upstream spreading of bottom-trapped plumes
title The upstream spreading of bottom-trapped plumes
spellingShingle The upstream spreading of bottom-trapped plumes
Matano, Ricardo
Numerical Models
River Plumes
Continental Shelf
Coastal models
title_short The upstream spreading of bottom-trapped plumes
title_full The upstream spreading of bottom-trapped plumes
title_fullStr The upstream spreading of bottom-trapped plumes
title_full_unstemmed The upstream spreading of bottom-trapped plumes
title_sort The upstream spreading of bottom-trapped plumes
dc.creator.none.fl_str_mv Matano, Ricardo
Palma, Elbio Daniel
author Matano, Ricardo
author_facet Matano, Ricardo
Palma, Elbio Daniel
author_role author
author2 Palma, Elbio Daniel
author2_role author
dc.subject.none.fl_str_mv Numerical Models
River Plumes
Continental Shelf
Coastal models
topic Numerical Models
River Plumes
Continental Shelf
Coastal models
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of<br />bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region.
Fil: Matano, Ricardo. Oregon State University; Estados Unidos
Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina
description It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of<br />bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region.
publishDate 2010
dc.date.none.fl_str_mv 2010-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/27950
Matano, Ricardo; Palma, Elbio Daniel; The upstream spreading of bottom-trapped plumes; American Meteorological Society; Journal of Physical Oceanography; 40; 7-2010; 1631-1650
0022-3670
CONICET Digital
CONICET
url http://hdl.handle.net/11336/27950
identifier_str_mv Matano, Ricardo; Palma, Elbio Daniel; The upstream spreading of bottom-trapped plumes; American Meteorological Society; Journal of Physical Oceanography; 40; 7-2010; 1631-1650
0022-3670
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1175/2010JPO4351.1
info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/pdf/10.1175/2010JPO4351.1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Meteorological Society
publisher.none.fl_str_mv American Meteorological Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614403084779520
score 13.070432