The upstream spreading of bottom-trapped plumes
- Autores
- Matano, Ricardo; Palma, Elbio Daniel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of
bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region.
Fil: Matano, Ricardo. Oregon State University; Estados Unidos
Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina - Materia
-
Numerical Models
River Plumes
Continental Shelf
Coastal models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/27950
Ver los metadatos del registro completo
id |
CONICETDig_8c8de0314765dfedd9f75dc7e08860cb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/27950 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The upstream spreading of bottom-trapped plumesMatano, RicardoPalma, Elbio DanielNumerical ModelsRiver PlumesContinental ShelfCoastal modelshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of<br />bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region.Fil: Matano, Ricardo. Oregon State University; Estados UnidosFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaAmerican Meteorological Society2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27950Matano, Ricardo; Palma, Elbio Daniel; The upstream spreading of bottom-trapped plumes; American Meteorological Society; Journal of Physical Oceanography; 40; 7-2010; 1631-16500022-3670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1175/2010JPO4351.1info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/pdf/10.1175/2010JPO4351.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:08Zoai:ri.conicet.gov.ar:11336/27950instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:08.466CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The upstream spreading of bottom-trapped plumes |
title |
The upstream spreading of bottom-trapped plumes |
spellingShingle |
The upstream spreading of bottom-trapped plumes Matano, Ricardo Numerical Models River Plumes Continental Shelf Coastal models |
title_short |
The upstream spreading of bottom-trapped plumes |
title_full |
The upstream spreading of bottom-trapped plumes |
title_fullStr |
The upstream spreading of bottom-trapped plumes |
title_full_unstemmed |
The upstream spreading of bottom-trapped plumes |
title_sort |
The upstream spreading of bottom-trapped plumes |
dc.creator.none.fl_str_mv |
Matano, Ricardo Palma, Elbio Daniel |
author |
Matano, Ricardo |
author_facet |
Matano, Ricardo Palma, Elbio Daniel |
author_role |
author |
author2 |
Palma, Elbio Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Numerical Models River Plumes Continental Shelf Coastal models |
topic |
Numerical Models River Plumes Continental Shelf Coastal models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of<br />bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region. Fil: Matano, Ricardo. Oregon State University; Estados Unidos Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina |
description |
It is well known that numerical simulations of freshwater discharges produce plumes that spread in the direction opposite to that of the propagation of coastally trapped waves (the upstream direction). The lack of a theory explaining these motions in unforced environments deemed the numerical results suspect. Thus, it became a common practice in numerical studies to add a downstream mean flow to arrest the development of the upstream perturbation. This approach is generally unjustified, and it remains a matter of interest to determine if the upstream displacement produced by models is a geophysical phenomenon or a consequence of erroneous assumptions in the model setup. In this article, the results of highly idealized numerical experiments are used to investigate these matters. It is shown that this phenomenon is associated with the geostrophic adjustment of the discharge and that upstream motion is endemic to the baroclinic structure of<br />bottom-trapped plumes. It is also shown that downstream displacements are generated by the cross-shelf barotropic pressure gradient generated by the propagation of coastally trapped waves. Sensitivity experiments indicate that the speed of upstream propagation and the density structure of the plume are affected by bottom friction, the slope of the bottom, and the magnitude of the density anomaly. Bottom friction in particular slows down the progression of the plume and changes its density structure, producing a more homogeneous downstream region and a more stratified upstream region. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/27950 Matano, Ricardo; Palma, Elbio Daniel; The upstream spreading of bottom-trapped plumes; American Meteorological Society; Journal of Physical Oceanography; 40; 7-2010; 1631-1650 0022-3670 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/27950 |
identifier_str_mv |
Matano, Ricardo; Palma, Elbio Daniel; The upstream spreading of bottom-trapped plumes; American Meteorological Society; Journal of Physical Oceanography; 40; 7-2010; 1631-1650 0022-3670 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1175/2010JPO4351.1 info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/pdf/10.1175/2010JPO4351.1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Meteorological Society |
publisher.none.fl_str_mv |
American Meteorological Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614403084779520 |
score |
13.070432 |