Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis

Autores
Bertotto, M. Mercedes; Gastón, Analía; Rodríguez Batiller, María Jose; Calello, Pablo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dynamic mechanical analysis (DMA) was applied to measure the Tg of rice IRGA 424 at different moisture content values (9.3%–22.3% wet basis). To conduct temperature sweeps, the samples were heated at a rate of 2°C/min from 20 to 120°C keeping frequency to 1 Hz. Tg was measured both from the E″ peak temperature (Tgmidpoint) and from the tan (δ) peak temperature (Tgendset). Tgmidpoint and Tgendset increased from 31.8 to 86.6°C and 42.1 to 104.7°C, respectively, as moisture content decreased from 22.3 to 9.3%. Six models were tested for their ability to predict Tg as a function of the moisture content. As all residuals were normally distributed and homoskedastic, standard metrics were used to assess the fitted models. Goodness of fit by these models was established by comparing the coefficient of determination (R2), standard error of the estimate (SEE), and mean relative deviation (MRD). The Gordon–Taylor linearized equation was the most accurate in predicting Tg. To predict Tg from the moisture content of the rice samples, a new expression was proposed. For the conditions considered in this work, the developed equation satisfactorily predicts the Tg of rice IRGA 424 without needing prior linearization.
Fil: Bertotto, M. Mercedes. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; Argentina
Fil: Gastón, Analía. Universidad Nacional de Rosario; Argentina
Fil: Rodríguez Batiller, María Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Calello, Pablo. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; Argentina
Materia
dynamic mechanical analysis
food processing
glass transition
mathematical modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93571

id CONICETDig_c8b9c3aa020d8cde66c02e3bc2462568
oai_identifier_str oai:ri.conicet.gov.ar:11336/93571
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysisBertotto, M. MercedesGastón, AnalíaRodríguez Batiller, María JoseCalello, Pablodynamic mechanical analysisfood processingglass transitionmathematical modelinghttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Dynamic mechanical analysis (DMA) was applied to measure the Tg of rice IRGA 424 at different moisture content values (9.3%–22.3% wet basis). To conduct temperature sweeps, the samples were heated at a rate of 2°C/min from 20 to 120°C keeping frequency to 1 Hz. Tg was measured both from the E″ peak temperature (Tgmidpoint) and from the tan (δ) peak temperature (Tgendset). Tgmidpoint and Tgendset increased from 31.8 to 86.6°C and 42.1 to 104.7°C, respectively, as moisture content decreased from 22.3 to 9.3%. Six models were tested for their ability to predict Tg as a function of the moisture content. As all residuals were normally distributed and homoskedastic, standard metrics were used to assess the fitted models. Goodness of fit by these models was established by comparing the coefficient of determination (R2), standard error of the estimate (SEE), and mean relative deviation (MRD). The Gordon–Taylor linearized equation was the most accurate in predicting Tg. To predict Tg from the moisture content of the rice samples, a new expression was proposed. For the conditions considered in this work, the developed equation satisfactorily predicts the Tg of rice IRGA 424 without needing prior linearization.Fil: Bertotto, M. Mercedes. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; ArgentinaFil: Gastón, Analía. Universidad Nacional de Rosario; ArgentinaFil: Rodríguez Batiller, María Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Calello, Pablo. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; ArgentinaWiley Blackwell Publishing, Inc2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93571Bertotto, M. Mercedes; Gastón, Analía; Rodríguez Batiller, María Jose; Calello, Pablo; Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis; Wiley Blackwell Publishing, Inc; Food Science & Nutrition; 6; 8; 10-2018; 2199-22092048-7177CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://doi.wiley.com/10.1002/fsn3.785info:eu-repo/semantics/altIdentifier/doi/10.1002/fsn3.785info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:55Zoai:ri.conicet.gov.ar:11336/93571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:55.691CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
title Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
spellingShingle Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
Bertotto, M. Mercedes
dynamic mechanical analysis
food processing
glass transition
mathematical modeling
title_short Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
title_full Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
title_fullStr Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
title_full_unstemmed Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
title_sort Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis
dc.creator.none.fl_str_mv Bertotto, M. Mercedes
Gastón, Analía
Rodríguez Batiller, María Jose
Calello, Pablo
author Bertotto, M. Mercedes
author_facet Bertotto, M. Mercedes
Gastón, Analía
Rodríguez Batiller, María Jose
Calello, Pablo
author_role author
author2 Gastón, Analía
Rodríguez Batiller, María Jose
Calello, Pablo
author2_role author
author
author
dc.subject.none.fl_str_mv dynamic mechanical analysis
food processing
glass transition
mathematical modeling
topic dynamic mechanical analysis
food processing
glass transition
mathematical modeling
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Dynamic mechanical analysis (DMA) was applied to measure the Tg of rice IRGA 424 at different moisture content values (9.3%–22.3% wet basis). To conduct temperature sweeps, the samples were heated at a rate of 2°C/min from 20 to 120°C keeping frequency to 1 Hz. Tg was measured both from the E″ peak temperature (Tgmidpoint) and from the tan (δ) peak temperature (Tgendset). Tgmidpoint and Tgendset increased from 31.8 to 86.6°C and 42.1 to 104.7°C, respectively, as moisture content decreased from 22.3 to 9.3%. Six models were tested for their ability to predict Tg as a function of the moisture content. As all residuals were normally distributed and homoskedastic, standard metrics were used to assess the fitted models. Goodness of fit by these models was established by comparing the coefficient of determination (R2), standard error of the estimate (SEE), and mean relative deviation (MRD). The Gordon–Taylor linearized equation was the most accurate in predicting Tg. To predict Tg from the moisture content of the rice samples, a new expression was proposed. For the conditions considered in this work, the developed equation satisfactorily predicts the Tg of rice IRGA 424 without needing prior linearization.
Fil: Bertotto, M. Mercedes. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; Argentina
Fil: Gastón, Analía. Universidad Nacional de Rosario; Argentina
Fil: Rodríguez Batiller, María Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Calello, Pablo. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; Argentina
description Dynamic mechanical analysis (DMA) was applied to measure the Tg of rice IRGA 424 at different moisture content values (9.3%–22.3% wet basis). To conduct temperature sweeps, the samples were heated at a rate of 2°C/min from 20 to 120°C keeping frequency to 1 Hz. Tg was measured both from the E″ peak temperature (Tgmidpoint) and from the tan (δ) peak temperature (Tgendset). Tgmidpoint and Tgendset increased from 31.8 to 86.6°C and 42.1 to 104.7°C, respectively, as moisture content decreased from 22.3 to 9.3%. Six models were tested for their ability to predict Tg as a function of the moisture content. As all residuals were normally distributed and homoskedastic, standard metrics were used to assess the fitted models. Goodness of fit by these models was established by comparing the coefficient of determination (R2), standard error of the estimate (SEE), and mean relative deviation (MRD). The Gordon–Taylor linearized equation was the most accurate in predicting Tg. To predict Tg from the moisture content of the rice samples, a new expression was proposed. For the conditions considered in this work, the developed equation satisfactorily predicts the Tg of rice IRGA 424 without needing prior linearization.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93571
Bertotto, M. Mercedes; Gastón, Analía; Rodríguez Batiller, María Jose; Calello, Pablo; Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis; Wiley Blackwell Publishing, Inc; Food Science & Nutrition; 6; 8; 10-2018; 2199-2209
2048-7177
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93571
identifier_str_mv Bertotto, M. Mercedes; Gastón, Analía; Rodríguez Batiller, María Jose; Calello, Pablo; Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis; Wiley Blackwell Publishing, Inc; Food Science & Nutrition; 6; 8; 10-2018; 2199-2209
2048-7177
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://doi.wiley.com/10.1002/fsn3.785
info:eu-repo/semantics/altIdentifier/doi/10.1002/fsn3.785
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613230798831616
score 13.070432