Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis
- Autores
- Costa, Federico; Quintero Marquina, Gustavo Javier; Riddick, Maximiliano Luis; Andrini, Leandro Ruben; Vahnovan, Alejandra Valeria; Huck Iriart, Cristián
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A Self-Cooling Simulated Annealing (SCSA) algorithm is introduced for the optimization of nonlinear least-squares problems. In contrast to conventional simulated annealing techniques that require a predefined cooling schedule, the SCSA algorithm autonomously regulates system temperature based on the lowest figure of merit (ie. χ²) achieved at each iteration. The algorithm incorporates two key enhancements to improve efficiency: the separation of linear and nonlinear parameters, which reduces the dimensionality of the stochastic search space, and an adaptive Gaussian sampling mechanism that dynamically updates parameter-specific variances based on recent optimization history. A thermal resistance parameter (K) regulates the cooling rate and can be adjusted according to problem complexity. Performance benchmarking against standard Monte Carlo and gradient-based methods demonstrates that SCSA offers greater robustness in avoiding local minima and provides reliable convergence across varying levels of optimization difficulty. These characteristics make the method broadly applicable to nonlinear data analysis and other complex optimization tasks.
Fil: Costa, Federico. Universidad Politécnica de Catalunya; España
Fil: Quintero Marquina, Gustavo Javier. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Fil: Riddick, Maximiliano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina
Fil: Andrini, Leandro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
Fil: Vahnovan, Alejandra Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina - Materia
-
MONTE CARLO
DATA ANALYSIS
PARAMETRIC FUNCTIONS
SIMULATED ANNEALING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/278863
Ver los metadatos del registro completo
| id |
CONICETDig_c797fe20bb75512b9ccee3d6981e5000 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/278863 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data AnalysisCosta, FedericoQuintero Marquina, Gustavo JavierRiddick, Maximiliano LuisAndrini, Leandro RubenVahnovan, Alejandra ValeriaHuck Iriart, CristiánMONTE CARLODATA ANALYSISPARAMETRIC FUNCTIONSSIMULATED ANNEALINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A Self-Cooling Simulated Annealing (SCSA) algorithm is introduced for the optimization of nonlinear least-squares problems. In contrast to conventional simulated annealing techniques that require a predefined cooling schedule, the SCSA algorithm autonomously regulates system temperature based on the lowest figure of merit (ie. χ²) achieved at each iteration. The algorithm incorporates two key enhancements to improve efficiency: the separation of linear and nonlinear parameters, which reduces the dimensionality of the stochastic search space, and an adaptive Gaussian sampling mechanism that dynamically updates parameter-specific variances based on recent optimization history. A thermal resistance parameter (K) regulates the cooling rate and can be adjusted according to problem complexity. Performance benchmarking against standard Monte Carlo and gradient-based methods demonstrates that SCSA offers greater robustness in avoiding local minima and provides reliable convergence across varying levels of optimization difficulty. These characteristics make the method broadly applicable to nonlinear data analysis and other complex optimization tasks.Fil: Costa, Federico. Universidad Politécnica de Catalunya; EspañaFil: Quintero Marquina, Gustavo Javier. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaFil: Riddick, Maximiliano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; ArgentinaFil: Andrini, Leandro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; ArgentinaFil: Vahnovan, Alejandra Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; ArgentinaFil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaScientific Research and Community2025-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278863Costa, Federico; Quintero Marquina, Gustavo Javier; Riddick, Maximiliano Luis; Andrini, Leandro Ruben; Vahnovan, Alejandra Valeria; et al.; Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis; Scientific Research and Community; Journal of Mathematical & Computer Applications; 4; 4; 8-2025; 1-62754-6705CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinescientificresearch.com/journals/jmca/abstract/selfcooling-simulated-annealing-scsa-algorithm-for-nonlinear-least-squares-data-analysis-6739.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T11:44:15Zoai:ri.conicet.gov.ar:11336/278863instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 11:44:15.301CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis |
| title |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis |
| spellingShingle |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis Costa, Federico MONTE CARLO DATA ANALYSIS PARAMETRIC FUNCTIONS SIMULATED ANNEALING |
| title_short |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis |
| title_full |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis |
| title_fullStr |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis |
| title_full_unstemmed |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis |
| title_sort |
Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis |
| dc.creator.none.fl_str_mv |
Costa, Federico Quintero Marquina, Gustavo Javier Riddick, Maximiliano Luis Andrini, Leandro Ruben Vahnovan, Alejandra Valeria Huck Iriart, Cristián |
| author |
Costa, Federico |
| author_facet |
Costa, Federico Quintero Marquina, Gustavo Javier Riddick, Maximiliano Luis Andrini, Leandro Ruben Vahnovan, Alejandra Valeria Huck Iriart, Cristián |
| author_role |
author |
| author2 |
Quintero Marquina, Gustavo Javier Riddick, Maximiliano Luis Andrini, Leandro Ruben Vahnovan, Alejandra Valeria Huck Iriart, Cristián |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
MONTE CARLO DATA ANALYSIS PARAMETRIC FUNCTIONS SIMULATED ANNEALING |
| topic |
MONTE CARLO DATA ANALYSIS PARAMETRIC FUNCTIONS SIMULATED ANNEALING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A Self-Cooling Simulated Annealing (SCSA) algorithm is introduced for the optimization of nonlinear least-squares problems. In contrast to conventional simulated annealing techniques that require a predefined cooling schedule, the SCSA algorithm autonomously regulates system temperature based on the lowest figure of merit (ie. χ²) achieved at each iteration. The algorithm incorporates two key enhancements to improve efficiency: the separation of linear and nonlinear parameters, which reduces the dimensionality of the stochastic search space, and an adaptive Gaussian sampling mechanism that dynamically updates parameter-specific variances based on recent optimization history. A thermal resistance parameter (K) regulates the cooling rate and can be adjusted according to problem complexity. Performance benchmarking against standard Monte Carlo and gradient-based methods demonstrates that SCSA offers greater robustness in avoiding local minima and provides reliable convergence across varying levels of optimization difficulty. These characteristics make the method broadly applicable to nonlinear data analysis and other complex optimization tasks. Fil: Costa, Federico. Universidad Politécnica de Catalunya; España Fil: Quintero Marquina, Gustavo Javier. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina Fil: Riddick, Maximiliano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina Fil: Andrini, Leandro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina Fil: Vahnovan, Alejandra Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina |
| description |
A Self-Cooling Simulated Annealing (SCSA) algorithm is introduced for the optimization of nonlinear least-squares problems. In contrast to conventional simulated annealing techniques that require a predefined cooling schedule, the SCSA algorithm autonomously regulates system temperature based on the lowest figure of merit (ie. χ²) achieved at each iteration. The algorithm incorporates two key enhancements to improve efficiency: the separation of linear and nonlinear parameters, which reduces the dimensionality of the stochastic search space, and an adaptive Gaussian sampling mechanism that dynamically updates parameter-specific variances based on recent optimization history. A thermal resistance parameter (K) regulates the cooling rate and can be adjusted according to problem complexity. Performance benchmarking against standard Monte Carlo and gradient-based methods demonstrates that SCSA offers greater robustness in avoiding local minima and provides reliable convergence across varying levels of optimization difficulty. These characteristics make the method broadly applicable to nonlinear data analysis and other complex optimization tasks. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/278863 Costa, Federico; Quintero Marquina, Gustavo Javier; Riddick, Maximiliano Luis; Andrini, Leandro Ruben; Vahnovan, Alejandra Valeria; et al.; Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis; Scientific Research and Community; Journal of Mathematical & Computer Applications; 4; 4; 8-2025; 1-6 2754-6705 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/278863 |
| identifier_str_mv |
Costa, Federico; Quintero Marquina, Gustavo Javier; Riddick, Maximiliano Luis; Andrini, Leandro Ruben; Vahnovan, Alejandra Valeria; et al.; Self-Cooling Simulated Annealing (SCSA) Algorithm for Nonlinear Least Square’s Data Analysis; Scientific Research and Community; Journal of Mathematical & Computer Applications; 4; 4; 8-2025; 1-6 2754-6705 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinescientificresearch.com/journals/jmca/abstract/selfcooling-simulated-annealing-scsa-algorithm-for-nonlinear-least-squares-data-analysis-6739.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Scientific Research and Community |
| publisher.none.fl_str_mv |
Scientific Research and Community |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1854320807640039424 |
| score |
13.113929 |