Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams

Autores
Quinteiro, Guillermo Federico; Kuhn, Tilmann
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An optical vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which may carry well-defined values of spin (polarization σ) and orbital angular momenta; the orbital angular momentum per photon is given by the topological charge times the Planck constant. Here we study the light hole–to–conduction band transitions in a semiconductor quantum dot induced by a highly focused beam originating from a = 1 paraxial optical vortex. We find that at normal incidence the pulse will produce two distinct types of electron-hole pairs, depending on the relative signs of σ and . When sgn(σ) = sgn(), the pulse will create electron-hole pairs with band+spin and envelope angular momenta both equal to 1. In contrast, for sgn(σ) = sgn(), the electron-hole pairs will have neither band+spin nor envelope angular momenta. A tightly focused optical-vortex beam thus makes possible the creation of pairs that cannot be produced with plane waves at normal incidence. With the addition of co-propagating plane waves or switching techniques to change the charge both the band+spin and the envelope angular momenta of the pair wave function can be precisely controlled. We discuss possible applications in the field of spintronics that open up.
Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universität Münster; Alemania
Fil: Kuhn, Tilmann. Universität Münster; Alemania
Materia
Optical Vortex
Twisted Light
Quantum Dot
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18032

id CONICETDig_c78047a77b4cfa1482eebbef020079a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/18032
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beamsQuinteiro, Guillermo FedericoKuhn, TilmannOptical VortexTwisted LightQuantum Dothttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1An optical vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which may carry well-defined values of spin (polarization σ) and orbital angular momenta; the orbital angular momentum per photon is given by the topological charge times the Planck constant. Here we study the light hole–to–conduction band transitions in a semiconductor quantum dot induced by a highly focused beam originating from a = 1 paraxial optical vortex. We find that at normal incidence the pulse will produce two distinct types of electron-hole pairs, depending on the relative signs of σ and . When sgn(σ) = sgn(), the pulse will create electron-hole pairs with band+spin and envelope angular momenta both equal to 1. In contrast, for sgn(σ) = sgn(), the electron-hole pairs will have neither band+spin nor envelope angular momenta. A tightly focused optical-vortex beam thus makes possible the creation of pairs that cannot be produced with plane waves at normal incidence. With the addition of co-propagating plane waves or switching techniques to change the charge both the band+spin and the envelope angular momenta of the pair wave function can be precisely controlled. We discuss possible applications in the field of spintronics that open up.Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universität Münster; AlemaniaFil: Kuhn, Tilmann. Universität Münster; AlemaniaAmerican Physical Society2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18032Quinteiro, Guillermo Federico; Kuhn, Tilmann; Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 90; 11; 9-2014; 1-9; 1154011098-0121enginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.90.115401info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.115401info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7229info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:01Zoai:ri.conicet.gov.ar:11336/18032instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:01.439CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
title Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
spellingShingle Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
Quinteiro, Guillermo Federico
Optical Vortex
Twisted Light
Quantum Dot
title_short Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
title_full Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
title_fullStr Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
title_full_unstemmed Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
title_sort Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
dc.creator.none.fl_str_mv Quinteiro, Guillermo Federico
Kuhn, Tilmann
author Quinteiro, Guillermo Federico
author_facet Quinteiro, Guillermo Federico
Kuhn, Tilmann
author_role author
author2 Kuhn, Tilmann
author2_role author
dc.subject.none.fl_str_mv Optical Vortex
Twisted Light
Quantum Dot
topic Optical Vortex
Twisted Light
Quantum Dot
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An optical vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which may carry well-defined values of spin (polarization σ) and orbital angular momenta; the orbital angular momentum per photon is given by the topological charge times the Planck constant. Here we study the light hole–to–conduction band transitions in a semiconductor quantum dot induced by a highly focused beam originating from a = 1 paraxial optical vortex. We find that at normal incidence the pulse will produce two distinct types of electron-hole pairs, depending on the relative signs of σ and . When sgn(σ) = sgn(), the pulse will create electron-hole pairs with band+spin and envelope angular momenta both equal to 1. In contrast, for sgn(σ) = sgn(), the electron-hole pairs will have neither band+spin nor envelope angular momenta. A tightly focused optical-vortex beam thus makes possible the creation of pairs that cannot be produced with plane waves at normal incidence. With the addition of co-propagating plane waves or switching techniques to change the charge both the band+spin and the envelope angular momenta of the pair wave function can be precisely controlled. We discuss possible applications in the field of spintronics that open up.
Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universität Münster; Alemania
Fil: Kuhn, Tilmann. Universität Münster; Alemania
description An optical vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which may carry well-defined values of spin (polarization σ) and orbital angular momenta; the orbital angular momentum per photon is given by the topological charge times the Planck constant. Here we study the light hole–to–conduction band transitions in a semiconductor quantum dot induced by a highly focused beam originating from a = 1 paraxial optical vortex. We find that at normal incidence the pulse will produce two distinct types of electron-hole pairs, depending on the relative signs of σ and . When sgn(σ) = sgn(), the pulse will create electron-hole pairs with band+spin and envelope angular momenta both equal to 1. In contrast, for sgn(σ) = sgn(), the electron-hole pairs will have neither band+spin nor envelope angular momenta. A tightly focused optical-vortex beam thus makes possible the creation of pairs that cannot be produced with plane waves at normal incidence. With the addition of co-propagating plane waves or switching techniques to change the charge both the band+spin and the envelope angular momenta of the pair wave function can be precisely controlled. We discuss possible applications in the field of spintronics that open up.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18032
Quinteiro, Guillermo Federico; Kuhn, Tilmann; Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 90; 11; 9-2014; 1-9; 115401
1098-0121
url http://hdl.handle.net/11336/18032
identifier_str_mv Quinteiro, Guillermo Federico; Kuhn, Tilmann; Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 90; 11; 9-2014; 1-9; 115401
1098-0121
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.90.115401
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.115401
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7229
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269886812782592
score 13.13397