Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups
- Autores
- Behnke, G. D.; Zabaloy, Maria Celina; Riggins, C. W.; Rodríguez-Zas, S.; Huang, L.; Villamil, Maria Bonita
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Agricultural practices of no-till and crop rotations are critical to counteract the detrimental effects of monocultures and tillage operations on ecosystem services related to soil health such as microbial N cycling. The present study explored the main steps of the microbial N cycle, using targeted gene abundance as a proxy, and concerning soil properties, following 19 and 20 years of crop monocultures and rotations of corn (Zea mays L.), and soybean [Glycine max (L.) Merr.], either under no-till or chisel tillage. Real-time quantitative polymerase chain reaction (qPCR) was implemented to estimate phylogenetic groups and functional genes related to the microbial N cycle: nifH (N2 fixation), amoA (nitrification) and nirK, nirS, and nosZ (denitrification). Our results indicate that long-term crop rotation and tillage decisions affect soil health as it relates to soil properties and microbial parameters. No-till management increased soil organic matter (SOM), decreased soil pH, and increased copy numbers of AOB (ammonia oxidizing bacteria). Crop rotations with more corn increased SOM, reduced soil pH, reduced AOA (ammonia oxidizing archaea) copy numbers, and increased AOB and fungal ITS copy numbers. NirK denitrifier groups were also enhanced under continuous corn. Altogether, the more corn years included in a crop rotation multiplies the amount of N needed to sustain yield levels, thereby intensifying the N cycle in these systems, potentially leading to acidification, enhanced bacterial nitrification, and creating an environment primed for N losses and increased N2O emissions.
Fil: Behnke, G. D.. University of Illinois; Estados Unidos
Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Riggins, C. W.. University of Illinois; Estados Unidos
Fil: Rodríguez-Zas, S.. University of Illinois; Estados Unidos
Fil: Huang, L.. University of Illinois; Estados Unidos
Fil: Villamil, Maria Bonita. University of Illinois; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CROP ROTATION
DENITRIFICATION
MICROBIAL N CYCLE
NITRIFICATION
NITROGEN FIXATION
SOIL DEGRADATION
SOIL HEALTH
TILLAGE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142220
Ver los metadatos del registro completo
id |
CONICETDig_c749b3b5108c93589c37b7e75f948fef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142220 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groupsBehnke, G. D.Zabaloy, Maria CelinaRiggins, C. W.Rodríguez-Zas, S.Huang, L.Villamil, Maria BonitaCROP ROTATIONDENITRIFICATIONMICROBIAL N CYCLENITRIFICATIONNITROGEN FIXATIONSOIL DEGRADATIONSOIL HEALTHTILLAGEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Agricultural practices of no-till and crop rotations are critical to counteract the detrimental effects of monocultures and tillage operations on ecosystem services related to soil health such as microbial N cycling. The present study explored the main steps of the microbial N cycle, using targeted gene abundance as a proxy, and concerning soil properties, following 19 and 20 years of crop monocultures and rotations of corn (Zea mays L.), and soybean [Glycine max (L.) Merr.], either under no-till or chisel tillage. Real-time quantitative polymerase chain reaction (qPCR) was implemented to estimate phylogenetic groups and functional genes related to the microbial N cycle: nifH (N2 fixation), amoA (nitrification) and nirK, nirS, and nosZ (denitrification). Our results indicate that long-term crop rotation and tillage decisions affect soil health as it relates to soil properties and microbial parameters. No-till management increased soil organic matter (SOM), decreased soil pH, and increased copy numbers of AOB (ammonia oxidizing bacteria). Crop rotations with more corn increased SOM, reduced soil pH, reduced AOA (ammonia oxidizing archaea) copy numbers, and increased AOB and fungal ITS copy numbers. NirK denitrifier groups were also enhanced under continuous corn. Altogether, the more corn years included in a crop rotation multiplies the amount of N needed to sustain yield levels, thereby intensifying the N cycle in these systems, potentially leading to acidification, enhanced bacterial nitrification, and creating an environment primed for N losses and increased N2O emissions.Fil: Behnke, G. D.. University of Illinois; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Riggins, C. W.. University of Illinois; Estados UnidosFil: Rodríguez-Zas, S.. University of Illinois; Estados UnidosFil: Huang, L.. University of Illinois; Estados UnidosFil: Villamil, Maria Bonita. University of Illinois; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2020-06-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142220Behnke, G. D.; Zabaloy, Maria Celina; Riggins, C. W.; Rodríguez-Zas, S.; Huang, L.; et al.; Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups; Elsevier; Science of the Total Environment; 720; 10-6-2020; 1-10; 1375140048-9697CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969720310251info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2020.137514info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:33Zoai:ri.conicet.gov.ar:11336/142220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:33.382CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups |
title |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups |
spellingShingle |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups Behnke, G. D. CROP ROTATION DENITRIFICATION MICROBIAL N CYCLE NITRIFICATION NITROGEN FIXATION SOIL DEGRADATION SOIL HEALTH TILLAGE |
title_short |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups |
title_full |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups |
title_fullStr |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups |
title_full_unstemmed |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups |
title_sort |
Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups |
dc.creator.none.fl_str_mv |
Behnke, G. D. Zabaloy, Maria Celina Riggins, C. W. Rodríguez-Zas, S. Huang, L. Villamil, Maria Bonita |
author |
Behnke, G. D. |
author_facet |
Behnke, G. D. Zabaloy, Maria Celina Riggins, C. W. Rodríguez-Zas, S. Huang, L. Villamil, Maria Bonita |
author_role |
author |
author2 |
Zabaloy, Maria Celina Riggins, C. W. Rodríguez-Zas, S. Huang, L. Villamil, Maria Bonita |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CROP ROTATION DENITRIFICATION MICROBIAL N CYCLE NITRIFICATION NITROGEN FIXATION SOIL DEGRADATION SOIL HEALTH TILLAGE |
topic |
CROP ROTATION DENITRIFICATION MICROBIAL N CYCLE NITRIFICATION NITROGEN FIXATION SOIL DEGRADATION SOIL HEALTH TILLAGE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Agricultural practices of no-till and crop rotations are critical to counteract the detrimental effects of monocultures and tillage operations on ecosystem services related to soil health such as microbial N cycling. The present study explored the main steps of the microbial N cycle, using targeted gene abundance as a proxy, and concerning soil properties, following 19 and 20 years of crop monocultures and rotations of corn (Zea mays L.), and soybean [Glycine max (L.) Merr.], either under no-till or chisel tillage. Real-time quantitative polymerase chain reaction (qPCR) was implemented to estimate phylogenetic groups and functional genes related to the microbial N cycle: nifH (N2 fixation), amoA (nitrification) and nirK, nirS, and nosZ (denitrification). Our results indicate that long-term crop rotation and tillage decisions affect soil health as it relates to soil properties and microbial parameters. No-till management increased soil organic matter (SOM), decreased soil pH, and increased copy numbers of AOB (ammonia oxidizing bacteria). Crop rotations with more corn increased SOM, reduced soil pH, reduced AOA (ammonia oxidizing archaea) copy numbers, and increased AOB and fungal ITS copy numbers. NirK denitrifier groups were also enhanced under continuous corn. Altogether, the more corn years included in a crop rotation multiplies the amount of N needed to sustain yield levels, thereby intensifying the N cycle in these systems, potentially leading to acidification, enhanced bacterial nitrification, and creating an environment primed for N losses and increased N2O emissions. Fil: Behnke, G. D.. University of Illinois; Estados Unidos Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Riggins, C. W.. University of Illinois; Estados Unidos Fil: Rodríguez-Zas, S.. University of Illinois; Estados Unidos Fil: Huang, L.. University of Illinois; Estados Unidos Fil: Villamil, Maria Bonita. University of Illinois; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Agricultural practices of no-till and crop rotations are critical to counteract the detrimental effects of monocultures and tillage operations on ecosystem services related to soil health such as microbial N cycling. The present study explored the main steps of the microbial N cycle, using targeted gene abundance as a proxy, and concerning soil properties, following 19 and 20 years of crop monocultures and rotations of corn (Zea mays L.), and soybean [Glycine max (L.) Merr.], either under no-till or chisel tillage. Real-time quantitative polymerase chain reaction (qPCR) was implemented to estimate phylogenetic groups and functional genes related to the microbial N cycle: nifH (N2 fixation), amoA (nitrification) and nirK, nirS, and nosZ (denitrification). Our results indicate that long-term crop rotation and tillage decisions affect soil health as it relates to soil properties and microbial parameters. No-till management increased soil organic matter (SOM), decreased soil pH, and increased copy numbers of AOB (ammonia oxidizing bacteria). Crop rotations with more corn increased SOM, reduced soil pH, reduced AOA (ammonia oxidizing archaea) copy numbers, and increased AOB and fungal ITS copy numbers. NirK denitrifier groups were also enhanced under continuous corn. Altogether, the more corn years included in a crop rotation multiplies the amount of N needed to sustain yield levels, thereby intensifying the N cycle in these systems, potentially leading to acidification, enhanced bacterial nitrification, and creating an environment primed for N losses and increased N2O emissions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142220 Behnke, G. D.; Zabaloy, Maria Celina; Riggins, C. W.; Rodríguez-Zas, S.; Huang, L.; et al.; Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups; Elsevier; Science of the Total Environment; 720; 10-6-2020; 1-10; 137514 0048-9697 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142220 |
identifier_str_mv |
Behnke, G. D.; Zabaloy, Maria Celina; Riggins, C. W.; Rodríguez-Zas, S.; Huang, L.; et al.; Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups; Elsevier; Science of the Total Environment; 720; 10-6-2020; 1-10; 137514 0048-9697 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969720310251 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2020.137514 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614495400361984 |
score |
13.070432 |