Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil

Autores
Kim, N.; Riggins, C. W.; Rodríguez Zas, S.; Zabaloy, Maria Celina; Villamil, Maria Bonita
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
No-till in continuous corn (Zea mays L.) production helps to keep an important volume of residues on the soil surface, creating management challenges that could be alleviated by residue removal for bioenergy or animal use. Crop residues, however, are essential to stimulate microbial nutrient cycling in agroecosystems. Thus, both residue removal and tillage options need to be fully evaluated for their impacts on ecosystem services related to soil health, including microbial N cycling. We explored the main steps of the microbial N cycle in relation to soil properties by using targeted gene abundance as a proxy following over a decade of residue removal in continuous corn systems either under no-till or chisel tillage. We used real-time quantitative polymerase chain reaction (qPCR) for the quantification of phylogenetic groups and functional gene screening of the soil microbial communities, including genes encoding critical enzymes of the microbial N cycle: nifH (N2 fixation), amoA (nitrification – ammonia oxidation), nirK and nirS (denitrification – nitrite reduction), and nosZ (denitrification – nitrous oxide reduction). Our results showed that long-term residue removal and tillage decreased soil organic matter (SOM), water aggregate stability (WAS), and the relative abundance (RA) of ammonia-oxidizing bacteria (AOB) carrying nitrifying amoA genes. Denitrifiers carrying nirS genes decreased under no-till as crop residue was removed. In addition, our results evidenced strong correlations among soil properties and phylogenetic groups of bacteria, archaea, and fungi. Overall, this study demonstrated limited but definite impacts of residue management and tillage on the soil environment, which could be exacerbated under less resilient conditions.
Fil: Kim, N.. University of Illinois; Estados Unidos
Fil: Riggins, C. W.. University of Illinois; Estados Unidos
Fil: Rodríguez Zas, S.. University of Illinois; Estados Unidos
Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Villamil, Maria Bonita. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Illinois; Estados Unidos
Materia
AMMONIA OXIDATION
DENITRIFICATION
MICROBIAL N CYCLE
NITRIFICATION
NITROGEN FIXATION
SOIL DEGRADATION
SOIL HEALTH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135050

id CONICETDig_b1b55d9f2f10800ef01143500011ab9d
oai_identifier_str oai:ri.conicet.gov.ar:11336/135050
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soilKim, N.Riggins, C. W.Rodríguez Zas, S.Zabaloy, Maria CelinaVillamil, Maria BonitaAMMONIA OXIDATIONDENITRIFICATIONMICROBIAL N CYCLENITRIFICATIONNITROGEN FIXATIONSOIL DEGRADATIONSOIL HEALTHhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4No-till in continuous corn (Zea mays L.) production helps to keep an important volume of residues on the soil surface, creating management challenges that could be alleviated by residue removal for bioenergy or animal use. Crop residues, however, are essential to stimulate microbial nutrient cycling in agroecosystems. Thus, both residue removal and tillage options need to be fully evaluated for their impacts on ecosystem services related to soil health, including microbial N cycling. We explored the main steps of the microbial N cycle in relation to soil properties by using targeted gene abundance as a proxy following over a decade of residue removal in continuous corn systems either under no-till or chisel tillage. We used real-time quantitative polymerase chain reaction (qPCR) for the quantification of phylogenetic groups and functional gene screening of the soil microbial communities, including genes encoding critical enzymes of the microbial N cycle: nifH (N2 fixation), amoA (nitrification – ammonia oxidation), nirK and nirS (denitrification – nitrite reduction), and nosZ (denitrification – nitrous oxide reduction). Our results showed that long-term residue removal and tillage decreased soil organic matter (SOM), water aggregate stability (WAS), and the relative abundance (RA) of ammonia-oxidizing bacteria (AOB) carrying nitrifying amoA genes. Denitrifiers carrying nirS genes decreased under no-till as crop residue was removed. In addition, our results evidenced strong correlations among soil properties and phylogenetic groups of bacteria, archaea, and fungi. Overall, this study demonstrated limited but definite impacts of residue management and tillage on the soil environment, which could be exacerbated under less resilient conditions.Fil: Kim, N.. University of Illinois; Estados UnidosFil: Riggins, C. W.. University of Illinois; Estados UnidosFil: Rodríguez Zas, S.. University of Illinois; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Villamil, Maria Bonita. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Illinois; Estados UnidosElsevier Science2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135050Kim, N.; Riggins, C. W.; Rodríguez Zas, S.; Zabaloy, Maria Celina; Villamil, Maria Bonita; Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil; Elsevier Science; Applied Soil Ecology; 157; 1-2021; 1-8; 1037300929-1393CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0929139320306594info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2020.103730info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:33Zoai:ri.conicet.gov.ar:11336/135050instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:33.733CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
title Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
spellingShingle Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
Kim, N.
AMMONIA OXIDATION
DENITRIFICATION
MICROBIAL N CYCLE
NITRIFICATION
NITROGEN FIXATION
SOIL DEGRADATION
SOIL HEALTH
title_short Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
title_full Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
title_fullStr Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
title_full_unstemmed Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
title_sort Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil
dc.creator.none.fl_str_mv Kim, N.
Riggins, C. W.
Rodríguez Zas, S.
Zabaloy, Maria Celina
Villamil, Maria Bonita
author Kim, N.
author_facet Kim, N.
Riggins, C. W.
Rodríguez Zas, S.
Zabaloy, Maria Celina
Villamil, Maria Bonita
author_role author
author2 Riggins, C. W.
Rodríguez Zas, S.
Zabaloy, Maria Celina
Villamil, Maria Bonita
author2_role author
author
author
author
dc.subject.none.fl_str_mv AMMONIA OXIDATION
DENITRIFICATION
MICROBIAL N CYCLE
NITRIFICATION
NITROGEN FIXATION
SOIL DEGRADATION
SOIL HEALTH
topic AMMONIA OXIDATION
DENITRIFICATION
MICROBIAL N CYCLE
NITRIFICATION
NITROGEN FIXATION
SOIL DEGRADATION
SOIL HEALTH
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv No-till in continuous corn (Zea mays L.) production helps to keep an important volume of residues on the soil surface, creating management challenges that could be alleviated by residue removal for bioenergy or animal use. Crop residues, however, are essential to stimulate microbial nutrient cycling in agroecosystems. Thus, both residue removal and tillage options need to be fully evaluated for their impacts on ecosystem services related to soil health, including microbial N cycling. We explored the main steps of the microbial N cycle in relation to soil properties by using targeted gene abundance as a proxy following over a decade of residue removal in continuous corn systems either under no-till or chisel tillage. We used real-time quantitative polymerase chain reaction (qPCR) for the quantification of phylogenetic groups and functional gene screening of the soil microbial communities, including genes encoding critical enzymes of the microbial N cycle: nifH (N2 fixation), amoA (nitrification – ammonia oxidation), nirK and nirS (denitrification – nitrite reduction), and nosZ (denitrification – nitrous oxide reduction). Our results showed that long-term residue removal and tillage decreased soil organic matter (SOM), water aggregate stability (WAS), and the relative abundance (RA) of ammonia-oxidizing bacteria (AOB) carrying nitrifying amoA genes. Denitrifiers carrying nirS genes decreased under no-till as crop residue was removed. In addition, our results evidenced strong correlations among soil properties and phylogenetic groups of bacteria, archaea, and fungi. Overall, this study demonstrated limited but definite impacts of residue management and tillage on the soil environment, which could be exacerbated under less resilient conditions.
Fil: Kim, N.. University of Illinois; Estados Unidos
Fil: Riggins, C. W.. University of Illinois; Estados Unidos
Fil: Rodríguez Zas, S.. University of Illinois; Estados Unidos
Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Villamil, Maria Bonita. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Illinois; Estados Unidos
description No-till in continuous corn (Zea mays L.) production helps to keep an important volume of residues on the soil surface, creating management challenges that could be alleviated by residue removal for bioenergy or animal use. Crop residues, however, are essential to stimulate microbial nutrient cycling in agroecosystems. Thus, both residue removal and tillage options need to be fully evaluated for their impacts on ecosystem services related to soil health, including microbial N cycling. We explored the main steps of the microbial N cycle in relation to soil properties by using targeted gene abundance as a proxy following over a decade of residue removal in continuous corn systems either under no-till or chisel tillage. We used real-time quantitative polymerase chain reaction (qPCR) for the quantification of phylogenetic groups and functional gene screening of the soil microbial communities, including genes encoding critical enzymes of the microbial N cycle: nifH (N2 fixation), amoA (nitrification – ammonia oxidation), nirK and nirS (denitrification – nitrite reduction), and nosZ (denitrification – nitrous oxide reduction). Our results showed that long-term residue removal and tillage decreased soil organic matter (SOM), water aggregate stability (WAS), and the relative abundance (RA) of ammonia-oxidizing bacteria (AOB) carrying nitrifying amoA genes. Denitrifiers carrying nirS genes decreased under no-till as crop residue was removed. In addition, our results evidenced strong correlations among soil properties and phylogenetic groups of bacteria, archaea, and fungi. Overall, this study demonstrated limited but definite impacts of residue management and tillage on the soil environment, which could be exacerbated under less resilient conditions.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135050
Kim, N.; Riggins, C. W.; Rodríguez Zas, S.; Zabaloy, Maria Celina; Villamil, Maria Bonita; Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil; Elsevier Science; Applied Soil Ecology; 157; 1-2021; 1-8; 103730
0929-1393
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135050
identifier_str_mv Kim, N.; Riggins, C. W.; Rodríguez Zas, S.; Zabaloy, Maria Celina; Villamil, Maria Bonita; Long-term residue removal under tillage decreases amoA-nitrifiers and stimulates nirS-denitrifier groups in the soil; Elsevier Science; Applied Soil Ecology; 157; 1-2021; 1-8; 103730
0929-1393
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0929139320306594
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2020.103730
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613507834707968
score 13.070432