Agent learning in autonomic manufacturing execution systems for enterprise networking
- Autores
- Rolon, Maria de Los Milagros; Martínez, Ernesto Carlos
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In enterprise networks, companies interact on a temporal basis through client-server relationships between order agents (clients) and resource agents (servers) acting as autonomic managers. In this work, the autonomic MES (@MES) proposed by Rolón and Martinez (2012) has been extended to allow selfish behavior and adaptive decision-making in distributed execution control and emergent scheduling. Agent learning in the @MES is addressed by rewarding order agents in order to continuously optimize their processing routes based on cost and reliability of alternative resource agents (servers). Service providers are rewarded so as to learn the quality level corresponding to each task which is used to define the processing time and cost for each client request. Two reinforcement learning algorithms have been implemented to simulate learning curves of client-server relationships in the @MES. Emerging behaviors obtained through generative simulation in a case study show that despite selfish behavior and policy adaptation in order and resource agents, the autonomic MES is able to reject significant disturbances and handle unplanned events successfully.
Fil: Rolon, Maria de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Agent-Based Simulation
Autonomic Systems
Distributed Production Control
Enterprise Networking
Manufacturing Execution Systems
Multi-Agent Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70200
Ver los metadatos del registro completo
id |
CONICETDig_c6c280b91e7e05d6b5c236b7ef1adb1f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70200 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Agent learning in autonomic manufacturing execution systems for enterprise networkingRolon, Maria de Los MilagrosMartínez, Ernesto CarlosAgent-Based SimulationAutonomic SystemsDistributed Production ControlEnterprise NetworkingManufacturing Execution SystemsMulti-Agent Learninghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In enterprise networks, companies interact on a temporal basis through client-server relationships between order agents (clients) and resource agents (servers) acting as autonomic managers. In this work, the autonomic MES (@MES) proposed by Rolón and Martinez (2012) has been extended to allow selfish behavior and adaptive decision-making in distributed execution control and emergent scheduling. Agent learning in the @MES is addressed by rewarding order agents in order to continuously optimize their processing routes based on cost and reliability of alternative resource agents (servers). Service providers are rewarded so as to learn the quality level corresponding to each task which is used to define the processing time and cost for each client request. Two reinforcement learning algorithms have been implemented to simulate learning curves of client-server relationships in the @MES. Emerging behaviors obtained through generative simulation in a case study show that despite selfish behavior and policy adaptation in order and resource agents, the autonomic MES is able to reject significant disturbances and handle unplanned events successfully.Fil: Rolon, Maria de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaPergamon-Elsevier Science Ltd2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70200Rolon, Maria de Los Milagros; Martínez, Ernesto Carlos; Agent learning in autonomic manufacturing execution systems for enterprise networking; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 63; 4; 12-2012; 901-9250360-8352CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cie.2012.06.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:05Zoai:ri.conicet.gov.ar:11336/70200instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:05.531CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Agent learning in autonomic manufacturing execution systems for enterprise networking |
title |
Agent learning in autonomic manufacturing execution systems for enterprise networking |
spellingShingle |
Agent learning in autonomic manufacturing execution systems for enterprise networking Rolon, Maria de Los Milagros Agent-Based Simulation Autonomic Systems Distributed Production Control Enterprise Networking Manufacturing Execution Systems Multi-Agent Learning |
title_short |
Agent learning in autonomic manufacturing execution systems for enterprise networking |
title_full |
Agent learning in autonomic manufacturing execution systems for enterprise networking |
title_fullStr |
Agent learning in autonomic manufacturing execution systems for enterprise networking |
title_full_unstemmed |
Agent learning in autonomic manufacturing execution systems for enterprise networking |
title_sort |
Agent learning in autonomic manufacturing execution systems for enterprise networking |
dc.creator.none.fl_str_mv |
Rolon, Maria de Los Milagros Martínez, Ernesto Carlos |
author |
Rolon, Maria de Los Milagros |
author_facet |
Rolon, Maria de Los Milagros Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Martínez, Ernesto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Agent-Based Simulation Autonomic Systems Distributed Production Control Enterprise Networking Manufacturing Execution Systems Multi-Agent Learning |
topic |
Agent-Based Simulation Autonomic Systems Distributed Production Control Enterprise Networking Manufacturing Execution Systems Multi-Agent Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In enterprise networks, companies interact on a temporal basis through client-server relationships between order agents (clients) and resource agents (servers) acting as autonomic managers. In this work, the autonomic MES (@MES) proposed by Rolón and Martinez (2012) has been extended to allow selfish behavior and adaptive decision-making in distributed execution control and emergent scheduling. Agent learning in the @MES is addressed by rewarding order agents in order to continuously optimize their processing routes based on cost and reliability of alternative resource agents (servers). Service providers are rewarded so as to learn the quality level corresponding to each task which is used to define the processing time and cost for each client request. Two reinforcement learning algorithms have been implemented to simulate learning curves of client-server relationships in the @MES. Emerging behaviors obtained through generative simulation in a case study show that despite selfish behavior and policy adaptation in order and resource agents, the autonomic MES is able to reject significant disturbances and handle unplanned events successfully. Fil: Rolon, Maria de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
In enterprise networks, companies interact on a temporal basis through client-server relationships between order agents (clients) and resource agents (servers) acting as autonomic managers. In this work, the autonomic MES (@MES) proposed by Rolón and Martinez (2012) has been extended to allow selfish behavior and adaptive decision-making in distributed execution control and emergent scheduling. Agent learning in the @MES is addressed by rewarding order agents in order to continuously optimize their processing routes based on cost and reliability of alternative resource agents (servers). Service providers are rewarded so as to learn the quality level corresponding to each task which is used to define the processing time and cost for each client request. Two reinforcement learning algorithms have been implemented to simulate learning curves of client-server relationships in the @MES. Emerging behaviors obtained through generative simulation in a case study show that despite selfish behavior and policy adaptation in order and resource agents, the autonomic MES is able to reject significant disturbances and handle unplanned events successfully. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70200 Rolon, Maria de Los Milagros; Martínez, Ernesto Carlos; Agent learning in autonomic manufacturing execution systems for enterprise networking; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 63; 4; 12-2012; 901-925 0360-8352 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70200 |
identifier_str_mv |
Rolon, Maria de Los Milagros; Martínez, Ernesto Carlos; Agent learning in autonomic manufacturing execution systems for enterprise networking; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 63; 4; 12-2012; 901-925 0360-8352 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cie.2012.06.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614440991850496 |
score |
13.070432 |