Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling
- Autores
- Tosselli, Laura; Bogado, Verónica Soledad; Martínez, Ernesto Carlos
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. The multi-project (re)scheduling must achieve the most efficient possible resource usage without increasing the prescribed project constraints, considering the Resource Leveling Problem (RLP), whose objective is to level the consumption of resources shared in order to minimize their idle times and to avoid overallocation conflicts. In this work, a multi-agent solution that allows solving the Resource Constrained Multi-project Scheduling Problem (RCMPSP) and the Resource Investment Problem is extended to incorporate indicators on agents? payoff functions to address the Resource Leveling Problem in a decentralized and autonomous way, through decoupled rules based on Trial-and-Error approach. The proposed agent-based simulation model is tested through a set of project instances that vary in their structure, parameters, number of resources shared, etc. Results obtained are assessed through different scheduling goals, such as project total duration, project total cost and leveling resource usage. Our results are far better compared to the ones obtained with alternative approaches. This proposal shows that the interacting agents that implement decoupled learning rules find a solution which can be understood as a Nash equilibrium.
Fil: Tosselli, Laura. Universidad Tecnológica Nacional; Argentina
Fil: Bogado, Verónica Soledad. Universidad Tecnológica Nacional; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
AGENT-BASED SIMULATION
MULTI-AGENT SYSTEMS
FRACTAL ORGANIZATIONS
PROJECT-BASED MANAGEMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87145
Ver los metadatos del registro completo
id |
CONICETDig_c0e3b77c6d322838e90169ed374623c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87145 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)schedulingTosselli, LauraBogado, Verónica SoledadMartínez, Ernesto CarlosAGENT-BASED SIMULATIONMULTI-AGENT SYSTEMSFRACTAL ORGANIZATIONSPROJECT-BASED MANAGEMENThttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. The multi-project (re)scheduling must achieve the most efficient possible resource usage without increasing the prescribed project constraints, considering the Resource Leveling Problem (RLP), whose objective is to level the consumption of resources shared in order to minimize their idle times and to avoid overallocation conflicts. In this work, a multi-agent solution that allows solving the Resource Constrained Multi-project Scheduling Problem (RCMPSP) and the Resource Investment Problem is extended to incorporate indicators on agents? payoff functions to address the Resource Leveling Problem in a decentralized and autonomous way, through decoupled rules based on Trial-and-Error approach. The proposed agent-based simulation model is tested through a set of project instances that vary in their structure, parameters, number of resources shared, etc. Results obtained are assessed through different scheduling goals, such as project total duration, project total cost and leveling resource usage. Our results are far better compared to the ones obtained with alternative approaches. This proposal shows that the interacting agents that implement decoupled learning rules find a solution which can be understood as a Nash equilibrium.Fil: Tosselli, Laura. Universidad Tecnológica Nacional; ArgentinaFil: Bogado, Verónica Soledad. Universidad Tecnológica Nacional; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaRedUNCI2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87145Tosselli, Laura; Bogado, Verónica Soledad; Martínez, Ernesto Carlos; Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling; RedUNCI; Journal of Computer Science & Technology; 18; 2; 10-2018; 125-1351666-6038CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1085info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e14info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:58Zoai:ri.conicet.gov.ar:11336/87145instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:58.867CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling |
title |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling |
spellingShingle |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling Tosselli, Laura AGENT-BASED SIMULATION MULTI-AGENT SYSTEMS FRACTAL ORGANIZATIONS PROJECT-BASED MANAGEMENT |
title_short |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling |
title_full |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling |
title_fullStr |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling |
title_full_unstemmed |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling |
title_sort |
Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling |
dc.creator.none.fl_str_mv |
Tosselli, Laura Bogado, Verónica Soledad Martínez, Ernesto Carlos |
author |
Tosselli, Laura |
author_facet |
Tosselli, Laura Bogado, Verónica Soledad Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Bogado, Verónica Soledad Martínez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AGENT-BASED SIMULATION MULTI-AGENT SYSTEMS FRACTAL ORGANIZATIONS PROJECT-BASED MANAGEMENT |
topic |
AGENT-BASED SIMULATION MULTI-AGENT SYSTEMS FRACTAL ORGANIZATIONS PROJECT-BASED MANAGEMENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. The multi-project (re)scheduling must achieve the most efficient possible resource usage without increasing the prescribed project constraints, considering the Resource Leveling Problem (RLP), whose objective is to level the consumption of resources shared in order to minimize their idle times and to avoid overallocation conflicts. In this work, a multi-agent solution that allows solving the Resource Constrained Multi-project Scheduling Problem (RCMPSP) and the Resource Investment Problem is extended to incorporate indicators on agents? payoff functions to address the Resource Leveling Problem in a decentralized and autonomous way, through decoupled rules based on Trial-and-Error approach. The proposed agent-based simulation model is tested through a set of project instances that vary in their structure, parameters, number of resources shared, etc. Results obtained are assessed through different scheduling goals, such as project total duration, project total cost and leveling resource usage. Our results are far better compared to the ones obtained with alternative approaches. This proposal shows that the interacting agents that implement decoupled learning rules find a solution which can be understood as a Nash equilibrium. Fil: Tosselli, Laura. Universidad Tecnológica Nacional; Argentina Fil: Bogado, Verónica Soledad. Universidad Tecnológica Nacional; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. The multi-project (re)scheduling must achieve the most efficient possible resource usage without increasing the prescribed project constraints, considering the Resource Leveling Problem (RLP), whose objective is to level the consumption of resources shared in order to minimize their idle times and to avoid overallocation conflicts. In this work, a multi-agent solution that allows solving the Resource Constrained Multi-project Scheduling Problem (RCMPSP) and the Resource Investment Problem is extended to incorporate indicators on agents? payoff functions to address the Resource Leveling Problem in a decentralized and autonomous way, through decoupled rules based on Trial-and-Error approach. The proposed agent-based simulation model is tested through a set of project instances that vary in their structure, parameters, number of resources shared, etc. Results obtained are assessed through different scheduling goals, such as project total duration, project total cost and leveling resource usage. Our results are far better compared to the ones obtained with alternative approaches. This proposal shows that the interacting agents that implement decoupled learning rules find a solution which can be understood as a Nash equilibrium. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87145 Tosselli, Laura; Bogado, Verónica Soledad; Martínez, Ernesto Carlos; Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling; RedUNCI; Journal of Computer Science & Technology; 18; 2; 10-2018; 125-135 1666-6038 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87145 |
identifier_str_mv |
Tosselli, Laura; Bogado, Verónica Soledad; Martínez, Ernesto Carlos; Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling; RedUNCI; Journal of Computer Science & Technology; 18; 2; 10-2018; 125-135 1666-6038 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1085 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e14 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
RedUNCI |
publisher.none.fl_str_mv |
RedUNCI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614210140504064 |
score |
13.070432 |