Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach
- Autores
- Blanco, Paula Daniela; Metternicht, Graciela; del Valle, Hector Francisco
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soil erosion is a key factor in land degradation processes in the sandy rangelands of the Peninsula Valdes of Patagonia, Argentina. Mapping landform and vegetation patterns is important for improving prediction, monitoring and planning of areas threatened by sand and shrub encroachment. This paper investigates the contribution of optical sensors, such as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and textural measures derived from microwave Radarsat Advanced Synthetic Aperture Radar (ASAR) to their discrimination. An evaluation is undertaken to compare the classification accuracy achieved by specific regions of the spectrum and their synergistic use in an object-oriented approach. Image segmentation and object-oriented classifications were applied to the datasets. This required defining appropriate fuzzy membership functions for characterizing active and stabilized lineal dunes and the main vegetation classes. Improvements in the discrimination of active and stabilized dunes (vegetated by either scrub or grass) were achieved by using an object-oriented classification that integrated microwave and visible near-infrared (NIR) data. Changes in surface roughness caused by different vegetation types stabilizing the dunes affected the radar backscattering. Whereas Radarsat enabled a clear separation of scrub-stabilized dunes, Terra-ASTER showed superior performance in the cartography of grass-stabilized dunes. The synergistic use of microwave and visible and near-infrared (VNIR) data yielded a substantial increase in the discrimination and mapping of landform/vegetation patterns.
Fil: Blanco, Paula Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina
Fil: Metternicht, Graciela. United Nations Environment Programme; Panamá
Fil: del Valle, Hector Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina - Materia
-
ASTER
RADARSAT-1
LANDFORM MAPPING
VEGETATION PATTERNS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96074
Ver los metadatos del registro completo
id |
CONICETDig_c64c734628a6695d1cd4f78206fc7f26 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96074 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approachBlanco, Paula DanielaMetternicht, Gracieladel Valle, Hector FranciscoASTERRADARSAT-1LANDFORM MAPPINGVEGETATION PATTERNShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Soil erosion is a key factor in land degradation processes in the sandy rangelands of the Peninsula Valdes of Patagonia, Argentina. Mapping landform and vegetation patterns is important for improving prediction, monitoring and planning of areas threatened by sand and shrub encroachment. This paper investigates the contribution of optical sensors, such as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and textural measures derived from microwave Radarsat Advanced Synthetic Aperture Radar (ASAR) to their discrimination. An evaluation is undertaken to compare the classification accuracy achieved by specific regions of the spectrum and their synergistic use in an object-oriented approach. Image segmentation and object-oriented classifications were applied to the datasets. This required defining appropriate fuzzy membership functions for characterizing active and stabilized lineal dunes and the main vegetation classes. Improvements in the discrimination of active and stabilized dunes (vegetated by either scrub or grass) were achieved by using an object-oriented classification that integrated microwave and visible near-infrared (NIR) data. Changes in surface roughness caused by different vegetation types stabilizing the dunes affected the radar backscattering. Whereas Radarsat enabled a clear separation of scrub-stabilized dunes, Terra-ASTER showed superior performance in the cartography of grass-stabilized dunes. The synergistic use of microwave and visible and near-infrared (VNIR) data yielded a substantial increase in the discrimination and mapping of landform/vegetation patterns.Fil: Blanco, Paula Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Metternicht, Graciela. United Nations Environment Programme; PanamáFil: del Valle, Hector Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaTaylor & Francis2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96074Blanco, Paula Daniela; Metternicht, Graciela; del Valle, Hector Francisco; Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach; Taylor & Francis; International Journal of Remote Sensing; 30; 10; 5-2009; 2579-26050143-1161CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01431160802552785info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431160802552785info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:24Zoai:ri.conicet.gov.ar:11336/96074instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:24.863CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach |
title |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach |
spellingShingle |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach Blanco, Paula Daniela ASTER RADARSAT-1 LANDFORM MAPPING VEGETATION PATTERNS |
title_short |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach |
title_full |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach |
title_fullStr |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach |
title_full_unstemmed |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach |
title_sort |
Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach |
dc.creator.none.fl_str_mv |
Blanco, Paula Daniela Metternicht, Graciela del Valle, Hector Francisco |
author |
Blanco, Paula Daniela |
author_facet |
Blanco, Paula Daniela Metternicht, Graciela del Valle, Hector Francisco |
author_role |
author |
author2 |
Metternicht, Graciela del Valle, Hector Francisco |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ASTER RADARSAT-1 LANDFORM MAPPING VEGETATION PATTERNS |
topic |
ASTER RADARSAT-1 LANDFORM MAPPING VEGETATION PATTERNS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Soil erosion is a key factor in land degradation processes in the sandy rangelands of the Peninsula Valdes of Patagonia, Argentina. Mapping landform and vegetation patterns is important for improving prediction, monitoring and planning of areas threatened by sand and shrub encroachment. This paper investigates the contribution of optical sensors, such as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and textural measures derived from microwave Radarsat Advanced Synthetic Aperture Radar (ASAR) to their discrimination. An evaluation is undertaken to compare the classification accuracy achieved by specific regions of the spectrum and their synergistic use in an object-oriented approach. Image segmentation and object-oriented classifications were applied to the datasets. This required defining appropriate fuzzy membership functions for characterizing active and stabilized lineal dunes and the main vegetation classes. Improvements in the discrimination of active and stabilized dunes (vegetated by either scrub or grass) were achieved by using an object-oriented classification that integrated microwave and visible near-infrared (NIR) data. Changes in surface roughness caused by different vegetation types stabilizing the dunes affected the radar backscattering. Whereas Radarsat enabled a clear separation of scrub-stabilized dunes, Terra-ASTER showed superior performance in the cartography of grass-stabilized dunes. The synergistic use of microwave and visible and near-infrared (VNIR) data yielded a substantial increase in the discrimination and mapping of landform/vegetation patterns. Fil: Blanco, Paula Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina Fil: Metternicht, Graciela. United Nations Environment Programme; Panamá Fil: del Valle, Hector Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina |
description |
Soil erosion is a key factor in land degradation processes in the sandy rangelands of the Peninsula Valdes of Patagonia, Argentina. Mapping landform and vegetation patterns is important for improving prediction, monitoring and planning of areas threatened by sand and shrub encroachment. This paper investigates the contribution of optical sensors, such as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and textural measures derived from microwave Radarsat Advanced Synthetic Aperture Radar (ASAR) to their discrimination. An evaluation is undertaken to compare the classification accuracy achieved by specific regions of the spectrum and their synergistic use in an object-oriented approach. Image segmentation and object-oriented classifications were applied to the datasets. This required defining appropriate fuzzy membership functions for characterizing active and stabilized lineal dunes and the main vegetation classes. Improvements in the discrimination of active and stabilized dunes (vegetated by either scrub or grass) were achieved by using an object-oriented classification that integrated microwave and visible near-infrared (NIR) data. Changes in surface roughness caused by different vegetation types stabilizing the dunes affected the radar backscattering. Whereas Radarsat enabled a clear separation of scrub-stabilized dunes, Terra-ASTER showed superior performance in the cartography of grass-stabilized dunes. The synergistic use of microwave and visible and near-infrared (VNIR) data yielded a substantial increase in the discrimination and mapping of landform/vegetation patterns. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96074 Blanco, Paula Daniela; Metternicht, Graciela; del Valle, Hector Francisco; Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach; Taylor & Francis; International Journal of Remote Sensing; 30; 10; 5-2009; 2579-2605 0143-1161 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96074 |
identifier_str_mv |
Blanco, Paula Daniela; Metternicht, Graciela; del Valle, Hector Francisco; Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach; Taylor & Francis; International Journal of Remote Sensing; 30; 10; 5-2009; 2579-2605 0143-1161 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/01431160802552785 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431160802552785 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613213676634112 |
score |
13.070432 |