Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface
- Autores
- Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose Luis; Ferrón, Alejandro; Choi, Taeyoung; Fernandez Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.
Fil: Yang, Kai. Ibm Research; Estados Unidos
Fil: Bae, Yujeong. Ibm Research; Estados Unidos. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur
Fil: Paul, William. Ibm Research; Estados Unidos
Fil: Natterer, Fabian D.. Ibm Research; Estados Unidos. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Willke, Philip. Ibm Research; Estados Unidos. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur
Fil: Lado, Jose Luis. International Iberian Nanotechnology Laboratory; Portugal
Fil: Ferrón, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Choi, Taeyoung. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur
Fil: Fernandez Rossier, Joaquín. International Iberian Nanotechnology Laboratory; Portugal. Universidad de Alicante; España
Fil: Heinrich, Andreas J.. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur
Fil: Lutz, Christopher P.. Ibm Research; Estados Unidos - Materia
-
Stm
Control
Exchange
Dipolar - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53707
Ver los metadatos del registro completo
id |
CONICETDig_c5660111deaadf1566cc5dce7f731dff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53707 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a SurfaceYang, KaiBae, YujeongPaul, WilliamNatterer, Fabian D.Willke, PhilipLado, Jose LuisFerrón, AlejandroChoi, TaeyoungFernandez Rossier, JoaquínHeinrich, Andreas J.Lutz, Christopher P.StmControlExchangeDipolarhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.Fil: Yang, Kai. Ibm Research; Estados UnidosFil: Bae, Yujeong. Ibm Research; Estados Unidos. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del SurFil: Paul, William. Ibm Research; Estados UnidosFil: Natterer, Fabian D.. Ibm Research; Estados Unidos. Ecole Polytechnique Federale de Lausanne; SuizaFil: Willke, Philip. Ibm Research; Estados Unidos. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del SurFil: Lado, Jose Luis. International Iberian Nanotechnology Laboratory; PortugalFil: Ferrón, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Choi, Taeyoung. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del SurFil: Fernandez Rossier, Joaquín. International Iberian Nanotechnology Laboratory; Portugal. Universidad de Alicante; EspañaFil: Heinrich, Andreas J.. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del SurFil: Lutz, Christopher P.. Ibm Research; Estados UnidosAmerican Physical Society2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53707Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; et al.; Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface; American Physical Society; Physical Review Letters; 119; 22; 11-2017; 1-5; 2272060031-90071079-7114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevLett.119.227206info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.119.227206info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:04Zoai:ri.conicet.gov.ar:11336/53707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:05.129CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface |
title |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface |
spellingShingle |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface Yang, Kai Stm Control Exchange Dipolar |
title_short |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface |
title_full |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface |
title_fullStr |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface |
title_full_unstemmed |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface |
title_sort |
Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface |
dc.creator.none.fl_str_mv |
Yang, Kai Bae, Yujeong Paul, William Natterer, Fabian D. Willke, Philip Lado, Jose Luis Ferrón, Alejandro Choi, Taeyoung Fernandez Rossier, Joaquín Heinrich, Andreas J. Lutz, Christopher P. |
author |
Yang, Kai |
author_facet |
Yang, Kai Bae, Yujeong Paul, William Natterer, Fabian D. Willke, Philip Lado, Jose Luis Ferrón, Alejandro Choi, Taeyoung Fernandez Rossier, Joaquín Heinrich, Andreas J. Lutz, Christopher P. |
author_role |
author |
author2 |
Bae, Yujeong Paul, William Natterer, Fabian D. Willke, Philip Lado, Jose Luis Ferrón, Alejandro Choi, Taeyoung Fernandez Rossier, Joaquín Heinrich, Andreas J. Lutz, Christopher P. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Stm Control Exchange Dipolar |
topic |
Stm Control Exchange Dipolar |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces. Fil: Yang, Kai. Ibm Research; Estados Unidos Fil: Bae, Yujeong. Ibm Research; Estados Unidos. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur Fil: Paul, William. Ibm Research; Estados Unidos Fil: Natterer, Fabian D.. Ibm Research; Estados Unidos. Ecole Polytechnique Federale de Lausanne; Suiza Fil: Willke, Philip. Ibm Research; Estados Unidos. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur Fil: Lado, Jose Luis. International Iberian Nanotechnology Laboratory; Portugal Fil: Ferrón, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina Fil: Choi, Taeyoung. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur Fil: Fernandez Rossier, Joaquín. International Iberian Nanotechnology Laboratory; Portugal. Universidad de Alicante; España Fil: Heinrich, Andreas J.. Center for Quantum Nanoscience, Institute for Basic Science (IBS); Corea del Sur. Ewha Womans University; Corea del Sur Fil: Lutz, Christopher P.. Ibm Research; Estados Unidos |
description |
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53707 Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; et al.; Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface; American Physical Society; Physical Review Letters; 119; 22; 11-2017; 1-5; 227206 0031-9007 1079-7114 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53707 |
identifier_str_mv |
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; et al.; Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface; American Physical Society; Physical Review Letters; 119; 22; 11-2017; 1-5; 227206 0031-9007 1079-7114 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevLett.119.227206 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.119.227206 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781254612025344 |
score |
12.928904 |