An overview of the sugarcane mosaic disease in South America

Autores
Perera, María Francisca; Filippone, María Paula; Noguera, Aldo Sergio; Cuenya, María Inés; Castagnaro, Atilio Pedro
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Sugarcane mosaic, one of the most important viral diseases of sugarcane, is widely distributed in the world and its economic significance varies among regions. Economic losses depend on varietal susceptibility, virus strains, interaction with other diseases, vector population and environmental conditions. Although not a major problem in some countries, sugarcane mosaic has caused substantial yield losses in other countries (Argentina, Brazil) due to severe outbreaks. Numerous strains of Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus(SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus of the family Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange.
Fil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Filippone, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Noguera, Aldo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Cuenya, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Materia
MOSAIC VIRUS
SUGARCANE
VIRAL DISEASES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/207298

id CONICETDig_c55220a28e7e33e41cd70c75efd4db58
oai_identifier_str oai:ri.conicet.gov.ar:11336/207298
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An overview of the sugarcane mosaic disease in South AmericaPerera, María FranciscaFilippone, María PaulaNoguera, Aldo SergioCuenya, María InésCastagnaro, Atilio PedroMOSAIC VIRUSSUGARCANEVIRAL DISEASEShttps://purl.org/becyt/ford/4.4https://purl.org/becyt/ford/4Sugarcane mosaic, one of the most important viral diseases of sugarcane, is widely distributed in the world and its economic significance varies among regions. Economic losses depend on varietal susceptibility, virus strains, interaction with other diseases, vector population and environmental conditions. Although not a major problem in some countries, sugarcane mosaic has caused substantial yield losses in other countries (Argentina, Brazil) due to severe outbreaks. Numerous strains of Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus(SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus of the family Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange.Fil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Filippone, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Noguera, Aldo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Cuenya, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaGlobal Science Books2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/207298Perera, María Francisca; Filippone, María Paula; Noguera, Aldo Sergio; Cuenya, María Inés; Castagnaro, Atilio Pedro; An overview of the sugarcane mosaic disease in South America; Global Science Books; Functional Plant Science and Biotechnology; 6; 2; 2-2012; 98-1071749-0472CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/FPSB_6(SI2)/FPSB_6(SI2)98-107o.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:51Zoai:ri.conicet.gov.ar:11336/207298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:52.208CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An overview of the sugarcane mosaic disease in South America
title An overview of the sugarcane mosaic disease in South America
spellingShingle An overview of the sugarcane mosaic disease in South America
Perera, María Francisca
MOSAIC VIRUS
SUGARCANE
VIRAL DISEASES
title_short An overview of the sugarcane mosaic disease in South America
title_full An overview of the sugarcane mosaic disease in South America
title_fullStr An overview of the sugarcane mosaic disease in South America
title_full_unstemmed An overview of the sugarcane mosaic disease in South America
title_sort An overview of the sugarcane mosaic disease in South America
dc.creator.none.fl_str_mv Perera, María Francisca
Filippone, María Paula
Noguera, Aldo Sergio
Cuenya, María Inés
Castagnaro, Atilio Pedro
author Perera, María Francisca
author_facet Perera, María Francisca
Filippone, María Paula
Noguera, Aldo Sergio
Cuenya, María Inés
Castagnaro, Atilio Pedro
author_role author
author2 Filippone, María Paula
Noguera, Aldo Sergio
Cuenya, María Inés
Castagnaro, Atilio Pedro
author2_role author
author
author
author
dc.subject.none.fl_str_mv MOSAIC VIRUS
SUGARCANE
VIRAL DISEASES
topic MOSAIC VIRUS
SUGARCANE
VIRAL DISEASES
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.4
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Sugarcane mosaic, one of the most important viral diseases of sugarcane, is widely distributed in the world and its economic significance varies among regions. Economic losses depend on varietal susceptibility, virus strains, interaction with other diseases, vector population and environmental conditions. Although not a major problem in some countries, sugarcane mosaic has caused substantial yield losses in other countries (Argentina, Brazil) due to severe outbreaks. Numerous strains of Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus(SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus of the family Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange.
Fil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Filippone, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Noguera, Aldo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Cuenya, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
Fil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina
description Sugarcane mosaic, one of the most important viral diseases of sugarcane, is widely distributed in the world and its economic significance varies among regions. Economic losses depend on varietal susceptibility, virus strains, interaction with other diseases, vector population and environmental conditions. Although not a major problem in some countries, sugarcane mosaic has caused substantial yield losses in other countries (Argentina, Brazil) due to severe outbreaks. Numerous strains of Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus(SrMV) are commonly associated with mosaic symptoms. Both viruses are members of the SCMV subgroup in the genus Potyvirus of the family Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. Potyviridae and their genetic variability could be effectively assessed only through DNA sequence comparisons. The greater genetic variability of viruses associated with sugarcane mosaic needs to be taken into consideration in breeding and biotechnology programmes for resistance to mosaic. The most effective way to control sugarcane mosaic has been through the use of resistant cultivars, which requires a complete understanding of the genetic diversity of the pathogens as well as their interaction with cultivars; resistance breakdown can occur when new strains or viruses appear. However, the production of healthy and genetically pure seed cane could be an available tool to reduce the pathogenic load in sugar cane growing areas. This could be achieved through hydro-heat-treatment followed by apical meristem in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. entry of new pathogens or variants of the established ones through germplasm exchange. in vitro culture and micropropagation. It is also relevant to implement extreme quarantine measures to prevent the entry of new pathogens or variants of the established ones through germplasm exchange.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/207298
Perera, María Francisca; Filippone, María Paula; Noguera, Aldo Sergio; Cuenya, María Inés; Castagnaro, Atilio Pedro; An overview of the sugarcane mosaic disease in South America; Global Science Books; Functional Plant Science and Biotechnology; 6; 2; 2-2012; 98-107
1749-0472
CONICET Digital
CONICET
url http://hdl.handle.net/11336/207298
identifier_str_mv Perera, María Francisca; Filippone, María Paula; Noguera, Aldo Sergio; Cuenya, María Inés; Castagnaro, Atilio Pedro; An overview of the sugarcane mosaic disease in South America; Global Science Books; Functional Plant Science and Biotechnology; 6; 2; 2-2012; 98-107
1749-0472
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/FPSB_6(SI2)/FPSB_6(SI2)98-107o.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Global Science Books
publisher.none.fl_str_mv Global Science Books
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083535830515712
score 13.22299