Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation
- Autores
- Perez, S. I.; Diniz Filho, J. A. F.; Bernal, Valeria; Gonzalez, Paula Natalia
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding the importance of environmental dimensions behind the morphological variation among populations has long been a central goal of evolutionary biology. The main objective of this study was to review the spatial regression techniques employed to test the association between morphological and environmental variables. In addition, we show empirically how spatial regression techniques can be used to test the association of cranialform variation among worldwide human populations with a set of ecological variables, taking into account the spatial autocorrelation in data. We suggest that spatial autocorrelation must be studied to explore the spatial structure underlying morphological variation and incorporated in regression models to provide more accurate statistical estimates of the relationships between morphological and ecological variables. Finally, we discuss the statistical properties of these techniques and the underlying reasons for using the spatial approach in population studies.
Fil: Perez, S. I.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina
Fil: Diniz Filho, J. A. F.. Universidade Federal de Goiás; Brasil
Fil: Bernal, Valeria. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Gonzalez, Paula Natalia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
AUTOCORRELATION
EVOLUTIONARY ANTHROPOLOGY
MORPHOMETRIC TECHNIQUES
SPATIAL STATISTICAL TECHNIQUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/243360
Ver los metadatos del registro completo
id |
CONICETDig_c4ec42021b8bb79759fa7e9bc080b4c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/243360 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variationPerez, S. I.Diniz Filho, J. A. F.Bernal, ValeriaGonzalez, Paula NataliaAUTOCORRELATIONEVOLUTIONARY ANTHROPOLOGYMORPHOMETRIC TECHNIQUESSPATIAL STATISTICAL TECHNIQUEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Understanding the importance of environmental dimensions behind the morphological variation among populations has long been a central goal of evolutionary biology. The main objective of this study was to review the spatial regression techniques employed to test the association between morphological and environmental variables. In addition, we show empirically how spatial regression techniques can be used to test the association of cranialform variation among worldwide human populations with a set of ecological variables, taking into account the spatial autocorrelation in data. We suggest that spatial autocorrelation must be studied to explore the spatial structure underlying morphological variation and incorporated in regression models to provide more accurate statistical estimates of the relationships between morphological and ecological variables. Finally, we discuss the statistical properties of these techniques and the underlying reasons for using the spatial approach in population studies.Fil: Perez, S. I.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; ArgentinaFil: Diniz Filho, J. A. F.. Universidade Federal de Goiás; BrasilFil: Bernal, Valeria. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gonzalez, Paula Natalia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaWiley Blackwell Publishing, Inc2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243360Perez, S. I.; Diniz Filho, J. A. F.; Bernal, Valeria; Gonzalez, Paula Natalia; Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation; Wiley Blackwell Publishing, Inc; Journal of Evolutionary Biology; 23; 2; 10-2010; 237-2481010-061XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2009.01905.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1420-9101.2009.01905.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:44Zoai:ri.conicet.gov.ar:11336/243360instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:44.378CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation |
title |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation |
spellingShingle |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation Perez, S. I. AUTOCORRELATION EVOLUTIONARY ANTHROPOLOGY MORPHOMETRIC TECHNIQUES SPATIAL STATISTICAL TECHNIQUES |
title_short |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation |
title_full |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation |
title_fullStr |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation |
title_full_unstemmed |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation |
title_sort |
Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation |
dc.creator.none.fl_str_mv |
Perez, S. I. Diniz Filho, J. A. F. Bernal, Valeria Gonzalez, Paula Natalia |
author |
Perez, S. I. |
author_facet |
Perez, S. I. Diniz Filho, J. A. F. Bernal, Valeria Gonzalez, Paula Natalia |
author_role |
author |
author2 |
Diniz Filho, J. A. F. Bernal, Valeria Gonzalez, Paula Natalia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
AUTOCORRELATION EVOLUTIONARY ANTHROPOLOGY MORPHOMETRIC TECHNIQUES SPATIAL STATISTICAL TECHNIQUES |
topic |
AUTOCORRELATION EVOLUTIONARY ANTHROPOLOGY MORPHOMETRIC TECHNIQUES SPATIAL STATISTICAL TECHNIQUES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Understanding the importance of environmental dimensions behind the morphological variation among populations has long been a central goal of evolutionary biology. The main objective of this study was to review the spatial regression techniques employed to test the association between morphological and environmental variables. In addition, we show empirically how spatial regression techniques can be used to test the association of cranialform variation among worldwide human populations with a set of ecological variables, taking into account the spatial autocorrelation in data. We suggest that spatial autocorrelation must be studied to explore the spatial structure underlying morphological variation and incorporated in regression models to provide more accurate statistical estimates of the relationships between morphological and ecological variables. Finally, we discuss the statistical properties of these techniques and the underlying reasons for using the spatial approach in population studies. Fil: Perez, S. I.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina Fil: Diniz Filho, J. A. F.. Universidade Federal de Goiás; Brasil Fil: Bernal, Valeria. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Gonzalez, Paula Natalia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Antropología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
Understanding the importance of environmental dimensions behind the morphological variation among populations has long been a central goal of evolutionary biology. The main objective of this study was to review the spatial regression techniques employed to test the association between morphological and environmental variables. In addition, we show empirically how spatial regression techniques can be used to test the association of cranialform variation among worldwide human populations with a set of ecological variables, taking into account the spatial autocorrelation in data. We suggest that spatial autocorrelation must be studied to explore the spatial structure underlying morphological variation and incorporated in regression models to provide more accurate statistical estimates of the relationships between morphological and ecological variables. Finally, we discuss the statistical properties of these techniques and the underlying reasons for using the spatial approach in population studies. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/243360 Perez, S. I.; Diniz Filho, J. A. F.; Bernal, Valeria; Gonzalez, Paula Natalia; Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation; Wiley Blackwell Publishing, Inc; Journal of Evolutionary Biology; 23; 2; 10-2010; 237-248 1010-061X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/243360 |
identifier_str_mv |
Perez, S. I.; Diniz Filho, J. A. F.; Bernal, Valeria; Gonzalez, Paula Natalia; Spatial regression techniques for inter‐population data: studying the relationships between morphological and environmental variation; Wiley Blackwell Publishing, Inc; Journal of Evolutionary Biology; 23; 2; 10-2010; 237-248 1010-061X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2009.01905.x info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1420-9101.2009.01905.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613038744797184 |
score |
13.070432 |