Root proliferation strategies and exploration of soil patchiness in arid communities
- Autores
- Reyes, María Fernanda; Aguiar, Martin Roberto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soil patchiness is a key feature of arid rangelands. As root proliferation contributes to soil exploration and resource uptake, it is ecologically relevant to understand how species respond to soil heterogeneity and coexist. Campbell et al.'s influential 1991 hypothesis proposes that dominant species deploy root systems (scale) that maximize soil volume explored. Instead, subordinate species show accurate root systems that exclusively proliferate in nutrient-rich patches (precision). After many experiments under controlled conditions, the generality of this hypothesis has been questioned but a field perspective is necessary to increase realism in the conceptual framework. We worked with a guild of perennial graminoid species inside a grazing exclosure in an arid Patagonian steppe, a model system for ecological studies in arid rangelands for four decades. We buried root traps in bare ground patches with sieved soil, with or without a pulse of nitrogen addition, to measure specific root biomass and precision at 6 and 18 months after burial. We also estimated scale (root density) in naturally established plants, and root decomposition in litter bags. Several species grew in root traps. Dominant species showed the highest root biomass (in both harvests) and scale. Subordinate species grew more frequently with nitrogen addition and showed lower biomass and scale. Similar total root biomass was found with and without nitrogen addition. Species differed in root decomposition, but correcting species biomass by decomposition did not change our conclusions. We did not find a relation between scale and precision, indicating that Campbell's hypothesis is probably not supported in this Patagonian steppe. Soil resource acquisition differences probably do not utterly explain the coexistence of dominant and subordinate species because the steppe is also affected by large herbivore grazing. We propose that root proliferation in this steppe is the result of the interaction between individual density in the community and specific root growth rates.
Fil: Reyes, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina - Materia
-
Graminoids
Nutrient Heterogeneity
Precision
Scale
Species Coexistence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56347
Ver los metadatos del registro completo
id |
CONICETDig_c4bca63074f8c394574559442ff77655 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56347 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Root proliferation strategies and exploration of soil patchiness in arid communitiesReyes, María FernandaAguiar, Martin RobertoGraminoidsNutrient HeterogeneityPrecisionScaleSpecies Coexistencehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Soil patchiness is a key feature of arid rangelands. As root proliferation contributes to soil exploration and resource uptake, it is ecologically relevant to understand how species respond to soil heterogeneity and coexist. Campbell et al.'s influential 1991 hypothesis proposes that dominant species deploy root systems (scale) that maximize soil volume explored. Instead, subordinate species show accurate root systems that exclusively proliferate in nutrient-rich patches (precision). After many experiments under controlled conditions, the generality of this hypothesis has been questioned but a field perspective is necessary to increase realism in the conceptual framework. We worked with a guild of perennial graminoid species inside a grazing exclosure in an arid Patagonian steppe, a model system for ecological studies in arid rangelands for four decades. We buried root traps in bare ground patches with sieved soil, with or without a pulse of nitrogen addition, to measure specific root biomass and precision at 6 and 18 months after burial. We also estimated scale (root density) in naturally established plants, and root decomposition in litter bags. Several species grew in root traps. Dominant species showed the highest root biomass (in both harvests) and scale. Subordinate species grew more frequently with nitrogen addition and showed lower biomass and scale. Similar total root biomass was found with and without nitrogen addition. Species differed in root decomposition, but correcting species biomass by decomposition did not change our conclusions. We did not find a relation between scale and precision, indicating that Campbell's hypothesis is probably not supported in this Patagonian steppe. Soil resource acquisition differences probably do not utterly explain the coexistence of dominant and subordinate species because the steppe is also affected by large herbivore grazing. We propose that root proliferation in this steppe is the result of the interaction between individual density in the community and specific root growth rates.Fil: Reyes, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaWiley Blackwell Publishing, Inc2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56347Reyes, María Fernanda; Aguiar, Martin Roberto; Root proliferation strategies and exploration of soil patchiness in arid communities; Wiley Blackwell Publishing, Inc; Austral Ecology; 42; 7; 11-2017; 810-8181442-9985CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/aec.12503info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/aec.12503info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:01:46Zoai:ri.conicet.gov.ar:11336/56347instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:01:46.689CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Root proliferation strategies and exploration of soil patchiness in arid communities |
title |
Root proliferation strategies and exploration of soil patchiness in arid communities |
spellingShingle |
Root proliferation strategies and exploration of soil patchiness in arid communities Reyes, María Fernanda Graminoids Nutrient Heterogeneity Precision Scale Species Coexistence |
title_short |
Root proliferation strategies and exploration of soil patchiness in arid communities |
title_full |
Root proliferation strategies and exploration of soil patchiness in arid communities |
title_fullStr |
Root proliferation strategies and exploration of soil patchiness in arid communities |
title_full_unstemmed |
Root proliferation strategies and exploration of soil patchiness in arid communities |
title_sort |
Root proliferation strategies and exploration of soil patchiness in arid communities |
dc.creator.none.fl_str_mv |
Reyes, María Fernanda Aguiar, Martin Roberto |
author |
Reyes, María Fernanda |
author_facet |
Reyes, María Fernanda Aguiar, Martin Roberto |
author_role |
author |
author2 |
Aguiar, Martin Roberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Graminoids Nutrient Heterogeneity Precision Scale Species Coexistence |
topic |
Graminoids Nutrient Heterogeneity Precision Scale Species Coexistence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Soil patchiness is a key feature of arid rangelands. As root proliferation contributes to soil exploration and resource uptake, it is ecologically relevant to understand how species respond to soil heterogeneity and coexist. Campbell et al.'s influential 1991 hypothesis proposes that dominant species deploy root systems (scale) that maximize soil volume explored. Instead, subordinate species show accurate root systems that exclusively proliferate in nutrient-rich patches (precision). After many experiments under controlled conditions, the generality of this hypothesis has been questioned but a field perspective is necessary to increase realism in the conceptual framework. We worked with a guild of perennial graminoid species inside a grazing exclosure in an arid Patagonian steppe, a model system for ecological studies in arid rangelands for four decades. We buried root traps in bare ground patches with sieved soil, with or without a pulse of nitrogen addition, to measure specific root biomass and precision at 6 and 18 months after burial. We also estimated scale (root density) in naturally established plants, and root decomposition in litter bags. Several species grew in root traps. Dominant species showed the highest root biomass (in both harvests) and scale. Subordinate species grew more frequently with nitrogen addition and showed lower biomass and scale. Similar total root biomass was found with and without nitrogen addition. Species differed in root decomposition, but correcting species biomass by decomposition did not change our conclusions. We did not find a relation between scale and precision, indicating that Campbell's hypothesis is probably not supported in this Patagonian steppe. Soil resource acquisition differences probably do not utterly explain the coexistence of dominant and subordinate species because the steppe is also affected by large herbivore grazing. We propose that root proliferation in this steppe is the result of the interaction between individual density in the community and specific root growth rates. Fil: Reyes, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina |
description |
Soil patchiness is a key feature of arid rangelands. As root proliferation contributes to soil exploration and resource uptake, it is ecologically relevant to understand how species respond to soil heterogeneity and coexist. Campbell et al.'s influential 1991 hypothesis proposes that dominant species deploy root systems (scale) that maximize soil volume explored. Instead, subordinate species show accurate root systems that exclusively proliferate in nutrient-rich patches (precision). After many experiments under controlled conditions, the generality of this hypothesis has been questioned but a field perspective is necessary to increase realism in the conceptual framework. We worked with a guild of perennial graminoid species inside a grazing exclosure in an arid Patagonian steppe, a model system for ecological studies in arid rangelands for four decades. We buried root traps in bare ground patches with sieved soil, with or without a pulse of nitrogen addition, to measure specific root biomass and precision at 6 and 18 months after burial. We also estimated scale (root density) in naturally established plants, and root decomposition in litter bags. Several species grew in root traps. Dominant species showed the highest root biomass (in both harvests) and scale. Subordinate species grew more frequently with nitrogen addition and showed lower biomass and scale. Similar total root biomass was found with and without nitrogen addition. Species differed in root decomposition, but correcting species biomass by decomposition did not change our conclusions. We did not find a relation between scale and precision, indicating that Campbell's hypothesis is probably not supported in this Patagonian steppe. Soil resource acquisition differences probably do not utterly explain the coexistence of dominant and subordinate species because the steppe is also affected by large herbivore grazing. We propose that root proliferation in this steppe is the result of the interaction between individual density in the community and specific root growth rates. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56347 Reyes, María Fernanda; Aguiar, Martin Roberto; Root proliferation strategies and exploration of soil patchiness in arid communities; Wiley Blackwell Publishing, Inc; Austral Ecology; 42; 7; 11-2017; 810-818 1442-9985 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56347 |
identifier_str_mv |
Reyes, María Fernanda; Aguiar, Martin Roberto; Root proliferation strategies and exploration of soil patchiness in arid communities; Wiley Blackwell Publishing, Inc; Austral Ecology; 42; 7; 11-2017; 810-818 1442-9985 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/aec.12503 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/aec.12503 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781209617629184 |
score |
12.982451 |