ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate

Autores
Tirado, Mónica; Espindola, Omar Alejandro; Real, Silvina; Zelaya, María Priscila; Marín Ramírez, Oscar Alonso; Comedi, David Mario
Año de publicación
2022
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3].
Fil: Tirado, Mónica. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Espindola, Omar Alejandro. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Real, Silvina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Zelaya, María Priscila. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society
Tel-Aviv
Israel
Tel-Aviv University
Israel Science Foundation
Materia
ZNO NANORODS
ELECTROPHORETIC DEPOSITION
SELF-ASSEMBLED NANOSTRUCTURES
SI SUBSTRATES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/243399

id CONICETDig_c4a7561e1389bfa0646857952e2eb332
oai_identifier_str oai:ri.conicet.gov.ar:11336/243399
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrateTirado, MónicaEspindola, Omar AlejandroReal, SilvinaZelaya, María PriscilaMarín Ramírez, Oscar AlonsoComedi, David MarioZNO NANORODSELECTROPHORETIC DEPOSITIONSELF-ASSEMBLED NANOSTRUCTURESSI SUBSTRATEShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3].Fil: Tirado, Mónica. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Espindola, Omar Alejandro. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Real, Silvina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Zelaya, María Priscila. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics SocietyTel-AvivIsraelTel-Aviv UniversityIsrael Science FoundationTel-Aviv University2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSimposioBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243399ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate; 14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society; Tel-Aviv; Israel; 2022; 68-69CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://web2.eng.tau.ac.il/wtest/elkin2022/wp-content/uploads/2022/07/program-abstracts-new.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:28Zoai:ri.conicet.gov.ar:11336/243399instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:28.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
title ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
spellingShingle ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
Tirado, Mónica
ZNO NANORODS
ELECTROPHORETIC DEPOSITION
SELF-ASSEMBLED NANOSTRUCTURES
SI SUBSTRATES
title_short ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
title_full ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
title_fullStr ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
title_full_unstemmed ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
title_sort ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
dc.creator.none.fl_str_mv Tirado, Mónica
Espindola, Omar Alejandro
Real, Silvina
Zelaya, María Priscila
Marín Ramírez, Oscar Alonso
Comedi, David Mario
author Tirado, Mónica
author_facet Tirado, Mónica
Espindola, Omar Alejandro
Real, Silvina
Zelaya, María Priscila
Marín Ramírez, Oscar Alonso
Comedi, David Mario
author_role author
author2 Espindola, Omar Alejandro
Real, Silvina
Zelaya, María Priscila
Marín Ramírez, Oscar Alonso
Comedi, David Mario
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv ZNO NANORODS
ELECTROPHORETIC DEPOSITION
SELF-ASSEMBLED NANOSTRUCTURES
SI SUBSTRATES
topic ZNO NANORODS
ELECTROPHORETIC DEPOSITION
SELF-ASSEMBLED NANOSTRUCTURES
SI SUBSTRATES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3].
Fil: Tirado, Mónica. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Espindola, Omar Alejandro. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Real, Silvina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Zelaya, María Priscila. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society
Tel-Aviv
Israel
Tel-Aviv University
Israel Science Foundation
description A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3].
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Simposio
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/243399
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate; 14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society; Tel-Aviv; Israel; 2022; 68-69
CONICET Digital
CONICET
url http://hdl.handle.net/11336/243399
identifier_str_mv ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate; 14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society; Tel-Aviv; Israel; 2022; 68-69
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://web2.eng.tau.ac.il/wtest/elkin2022/wp-content/uploads/2022/07/program-abstracts-new.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Tel-Aviv University
publisher.none.fl_str_mv Tel-Aviv University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844612990219845632
score 13.070432