ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate
- Autores
- Tirado, Mónica; Espindola, Omar Alejandro; Real, Silvina; Zelaya, María Priscila; Marín Ramírez, Oscar Alonso; Comedi, David Mario
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3].
Fil: Tirado, Mónica. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Espindola, Omar Alejandro. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Real, Silvina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Zelaya, María Priscila. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society
Tel-Aviv
Israel
Tel-Aviv University
Israel Science Foundation - Materia
-
ZNO NANORODS
ELECTROPHORETIC DEPOSITION
SELF-ASSEMBLED NANOSTRUCTURES
SI SUBSTRATES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/243399
Ver los metadatos del registro completo
id |
CONICETDig_c4a7561e1389bfa0646857952e2eb332 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/243399 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrateTirado, MónicaEspindola, Omar AlejandroReal, SilvinaZelaya, María PriscilaMarín Ramírez, Oscar AlonsoComedi, David MarioZNO NANORODSELECTROPHORETIC DEPOSITIONSELF-ASSEMBLED NANOSTRUCTURESSI SUBSTRATEShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3].Fil: Tirado, Mónica. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Espindola, Omar Alejandro. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Real, Silvina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Zelaya, María Priscila. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics SocietyTel-AvivIsraelTel-Aviv UniversityIsrael Science FoundationTel-Aviv University2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSimposioBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243399ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate; 14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society; Tel-Aviv; Israel; 2022; 68-69CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://web2.eng.tau.ac.il/wtest/elkin2022/wp-content/uploads/2022/07/program-abstracts-new.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:28Zoai:ri.conicet.gov.ar:11336/243399instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:28.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate |
title |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate |
spellingShingle |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate Tirado, Mónica ZNO NANORODS ELECTROPHORETIC DEPOSITION SELF-ASSEMBLED NANOSTRUCTURES SI SUBSTRATES |
title_short |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate |
title_full |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate |
title_fullStr |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate |
title_full_unstemmed |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate |
title_sort |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate |
dc.creator.none.fl_str_mv |
Tirado, Mónica Espindola, Omar Alejandro Real, Silvina Zelaya, María Priscila Marín Ramírez, Oscar Alonso Comedi, David Mario |
author |
Tirado, Mónica |
author_facet |
Tirado, Mónica Espindola, Omar Alejandro Real, Silvina Zelaya, María Priscila Marín Ramírez, Oscar Alonso Comedi, David Mario |
author_role |
author |
author2 |
Espindola, Omar Alejandro Real, Silvina Zelaya, María Priscila Marín Ramírez, Oscar Alonso Comedi, David Mario |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ZNO NANORODS ELECTROPHORETIC DEPOSITION SELF-ASSEMBLED NANOSTRUCTURES SI SUBSTRATES |
topic |
ZNO NANORODS ELECTROPHORETIC DEPOSITION SELF-ASSEMBLED NANOSTRUCTURES SI SUBSTRATES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3]. Fil: Tirado, Mónica. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina Fil: Espindola, Omar Alejandro. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina Fil: Real, Silvina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina Fil: Zelaya, María Priscila. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina 14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society Tel-Aviv Israel Tel-Aviv University Israel Science Foundation |
description |
A novel and simple self-assembled direct formation of ZnO nanorod (NR) bunches on boron (p-type)-doped crystalline Si (100) substrates has been achieved by the EPD technique. All the nanostructures were formed from a colloidal dispersion of ZnO NPs in 2-propanol, at room temperature, and without the use of sacrificial templates or pre-deposited Au nanoclusters on Si substrates.ZnO nanoparticle (NPs) colloidal dispersions were prepared based on a modification of the precipitation method reported by Bahnemann et al. [1]. ZnO NPs sizes were estimated from the absorbance spectra of NPs colloidal dispersions and compared to measurements obtained by TEM, which yielded an average diameter of 5 nm with a narrow size distribution, between 4 and 7 nm.The morphology of ZnO NR bunches is affected by the p-type Si substrate wholeconductivity (i.e., B dopant concentration). The nanorod diameters and lengths, as well as thebunch diameters, are larger for substrates with lower conductivity. A ZnO nanoporous film isobtained on non-conductive (nominally undoped) Si substrates without any one-dimensionalformation. XRD patterns indicated that ZnO NRs were preferentially formed in (002) directioncorresponding to c-axis orientation in the wurtzite structure.Photoluminescence (PL) spectra from NR bunches show a low UV excitonic emissionpeak and a broad visible emission peak. The light emission properties of nanostructures arestrongly determined by the properties of NPs used for the EPD deposition and not by thenanostructure morphology. The incorporation of NaOH during ZnO NP synthesis is useful tocomplete reactions of all the available Zn2+ to form dispersions with a higher ZnO NPsconcentration. Therefore, as virtually all the Zn is consumed, PL spectra do not exhibit Zn-typedefects compared to previous work [2].The easy obtaining of different morphologies of ZnO nanostructures depending on the Sisubstrate conductivity is desirable for their use as functional materials in technological devices.The results presented in this work expand the EPD technique applications to form nanorodnanostructures in a single step, representing a high technological potential for nanoscale device applications [3]. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Simposio Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/243399 ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate; 14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society; Tel-Aviv; Israel; 2022; 68-69 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/243399 |
identifier_str_mv |
ZnO nanorod bunches formation by Electrophoresis Deposition Technique: influence of the conductivity of the substrate; 14th International Symposium on Electrokinetic Phenomena; 1st Meeting of the International Electrokinetics Society; Tel-Aviv; Israel; 2022; 68-69 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://web2.eng.tau.ac.il/wtest/elkin2022/wp-content/uploads/2022/07/program-abstracts-new.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Tel-Aviv University |
publisher.none.fl_str_mv |
Tel-Aviv University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612990219845632 |
score |
13.070432 |