Integrable Systems and projective images of Kummer surfaces
- Autores
- Piovan, Luis Amadeo; Vanhaecke, Pol
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The (-1 )-involution on the Jacobian Jr of an arbitrary Riemann surfacer of genus two leads to a singular surface, the Kummer surface Icr of Jr, which,after desingularization, defines a X-3 surface Kr . We consider ample line bundleson Kr coming from the even or odd sections of [n O] with prescribed vanishingat the 2-division points of Jr (0 is the theta divisor of Jr). We use an integrablesystem to show that in the cases we study the linear system is base-point-free,to determine which curves are contracted to singular points and to compute anexplicit equation for the surface in projective space. Our explicit methods applyto the Kummer surface of any Abelian surface, given as the fiber of the momentmap of an algebraic completely integrable system.
Fil: Piovan, Luis Amadeo. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vanhaecke, Pol. Université de Poitiers; Francia - Materia
-
Integrable Systems
Abelian Surfaces
Kummer Surfaces
K 3 Surfaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80939
Ver los metadatos del registro completo
id |
CONICETDig_c47f671d7e571826999957a2876d7e92 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80939 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Integrable Systems and projective images of Kummer surfacesPiovan, Luis AmadeoVanhaecke, PolIntegrable SystemsAbelian SurfacesKummer SurfacesK 3 Surfaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The (-1 )-involution on the Jacobian Jr of an arbitrary Riemann surfacer of genus two leads to a singular surface, the Kummer surface Icr of Jr, which,after desingularization, defines a X-3 surface Kr . We consider ample line bundleson Kr coming from the even or odd sections of [n O] with prescribed vanishingat the 2-division points of Jr (0 is the theta divisor of Jr). We use an integrablesystem to show that in the cases we study the linear system is base-point-free,to determine which curves are contracted to singular points and to compute anexplicit equation for the surface in projective space. Our explicit methods applyto the Kummer surface of any Abelian surface, given as the fiber of the momentmap of an algebraic completely integrable system.Fil: Piovan, Luis Amadeo. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vanhaecke, Pol. Université de Poitiers; FranciaScuola Normale Superiore2000-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80939Piovan, Luis Amadeo; Vanhaecke, Pol; Integrable Systems and projective images of Kummer surfaces; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; XXIX; 2; 10-2000; 351-3920391-173XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.numdam.org/article/ASNSP_2000_4_29_2_351_0.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:40:39Zoai:ri.conicet.gov.ar:11336/80939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:40:39.367CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Integrable Systems and projective images of Kummer surfaces |
title |
Integrable Systems and projective images of Kummer surfaces |
spellingShingle |
Integrable Systems and projective images of Kummer surfaces Piovan, Luis Amadeo Integrable Systems Abelian Surfaces Kummer Surfaces K 3 Surfaces |
title_short |
Integrable Systems and projective images of Kummer surfaces |
title_full |
Integrable Systems and projective images of Kummer surfaces |
title_fullStr |
Integrable Systems and projective images of Kummer surfaces |
title_full_unstemmed |
Integrable Systems and projective images of Kummer surfaces |
title_sort |
Integrable Systems and projective images of Kummer surfaces |
dc.creator.none.fl_str_mv |
Piovan, Luis Amadeo Vanhaecke, Pol |
author |
Piovan, Luis Amadeo |
author_facet |
Piovan, Luis Amadeo Vanhaecke, Pol |
author_role |
author |
author2 |
Vanhaecke, Pol |
author2_role |
author |
dc.subject.none.fl_str_mv |
Integrable Systems Abelian Surfaces Kummer Surfaces K 3 Surfaces |
topic |
Integrable Systems Abelian Surfaces Kummer Surfaces K 3 Surfaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The (-1 )-involution on the Jacobian Jr of an arbitrary Riemann surfacer of genus two leads to a singular surface, the Kummer surface Icr of Jr, which,after desingularization, defines a X-3 surface Kr . We consider ample line bundleson Kr coming from the even or odd sections of [n O] with prescribed vanishingat the 2-division points of Jr (0 is the theta divisor of Jr). We use an integrablesystem to show that in the cases we study the linear system is base-point-free,to determine which curves are contracted to singular points and to compute anexplicit equation for the surface in projective space. Our explicit methods applyto the Kummer surface of any Abelian surface, given as the fiber of the momentmap of an algebraic completely integrable system. Fil: Piovan, Luis Amadeo. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vanhaecke, Pol. Université de Poitiers; Francia |
description |
The (-1 )-involution on the Jacobian Jr of an arbitrary Riemann surfacer of genus two leads to a singular surface, the Kummer surface Icr of Jr, which,after desingularization, defines a X-3 surface Kr . We consider ample line bundleson Kr coming from the even or odd sections of [n O] with prescribed vanishingat the 2-division points of Jr (0 is the theta divisor of Jr). We use an integrablesystem to show that in the cases we study the linear system is base-point-free,to determine which curves are contracted to singular points and to compute anexplicit equation for the surface in projective space. Our explicit methods applyto the Kummer surface of any Abelian surface, given as the fiber of the momentmap of an algebraic completely integrable system. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80939 Piovan, Luis Amadeo; Vanhaecke, Pol; Integrable Systems and projective images of Kummer surfaces; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; XXIX; 2; 10-2000; 351-392 0391-173X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80939 |
identifier_str_mv |
Piovan, Luis Amadeo; Vanhaecke, Pol; Integrable Systems and projective images of Kummer surfaces; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; XXIX; 2; 10-2000; 351-392 0391-173X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.numdam.org/article/ASNSP_2000_4_29_2_351_0.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scuola Normale Superiore |
publisher.none.fl_str_mv |
Scuola Normale Superiore |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082899159285760 |
score |
13.22299 |