Jacobian algebras with periodic module category and exponential growth

Autores
Valdivieso Díaz, Yadira
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2.
Fil: Valdivieso Díaz, Yadira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Auslander-Reiten Translation
Cluster Categories
Jacobian Algebras
Surfaces with Marked Points
Symmetric Algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/62638

id CONICETDig_c3e53a8459db96415ad7ad865614af5e
oai_identifier_str oai:ri.conicet.gov.ar:11336/62638
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Jacobian algebras with periodic module category and exponential growthValdivieso Díaz, YadiraAuslander-Reiten TranslationCluster CategoriesJacobian AlgebrasSurfaces with Marked PointsSymmetric Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2.Fil: Valdivieso Díaz, Yadira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62638Valdivieso Díaz, Yadira; Jacobian algebras with periodic module category and exponential growth; Academic Press Inc Elsevier Science; Journal of Algebra; 449; 3-2016; 163-1740021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.09.051info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869315005517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:08Zoai:ri.conicet.gov.ar:11336/62638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:08.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Jacobian algebras with periodic module category and exponential growth
title Jacobian algebras with periodic module category and exponential growth
spellingShingle Jacobian algebras with periodic module category and exponential growth
Valdivieso Díaz, Yadira
Auslander-Reiten Translation
Cluster Categories
Jacobian Algebras
Surfaces with Marked Points
Symmetric Algebras
title_short Jacobian algebras with periodic module category and exponential growth
title_full Jacobian algebras with periodic module category and exponential growth
title_fullStr Jacobian algebras with periodic module category and exponential growth
title_full_unstemmed Jacobian algebras with periodic module category and exponential growth
title_sort Jacobian algebras with periodic module category and exponential growth
dc.creator.none.fl_str_mv Valdivieso Díaz, Yadira
author Valdivieso Díaz, Yadira
author_facet Valdivieso Díaz, Yadira
author_role author
dc.subject.none.fl_str_mv Auslander-Reiten Translation
Cluster Categories
Jacobian Algebras
Surfaces with Marked Points
Symmetric Algebras
topic Auslander-Reiten Translation
Cluster Categories
Jacobian Algebras
Surfaces with Marked Points
Symmetric Algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2.
Fil: Valdivieso Díaz, Yadira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/62638
Valdivieso Díaz, Yadira; Jacobian algebras with periodic module category and exponential growth; Academic Press Inc Elsevier Science; Journal of Algebra; 449; 3-2016; 163-174
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/62638
identifier_str_mv Valdivieso Díaz, Yadira; Jacobian algebras with periodic module category and exponential growth; Academic Press Inc Elsevier Science; Journal of Algebra; 449; 3-2016; 163-174
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.09.051
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869315005517
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269621553463296
score 13.13397