Jacobian algebras with periodic module category and exponential growth
- Autores
- Valdivieso Díaz, Yadira
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2.
Fil: Valdivieso Díaz, Yadira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Auslander-Reiten Translation
Cluster Categories
Jacobian Algebras
Surfaces with Marked Points
Symmetric Algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/62638
Ver los metadatos del registro completo
id |
CONICETDig_c3e53a8459db96415ad7ad865614af5e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/62638 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Jacobian algebras with periodic module category and exponential growthValdivieso Díaz, YadiraAuslander-Reiten TranslationCluster CategoriesJacobian AlgebrasSurfaces with Marked PointsSymmetric Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2.Fil: Valdivieso Díaz, Yadira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62638Valdivieso Díaz, Yadira; Jacobian algebras with periodic module category and exponential growth; Academic Press Inc Elsevier Science; Journal of Algebra; 449; 3-2016; 163-1740021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.09.051info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869315005517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:08Zoai:ri.conicet.gov.ar:11336/62638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:08.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Jacobian algebras with periodic module category and exponential growth |
title |
Jacobian algebras with periodic module category and exponential growth |
spellingShingle |
Jacobian algebras with periodic module category and exponential growth Valdivieso Díaz, Yadira Auslander-Reiten Translation Cluster Categories Jacobian Algebras Surfaces with Marked Points Symmetric Algebras |
title_short |
Jacobian algebras with periodic module category and exponential growth |
title_full |
Jacobian algebras with periodic module category and exponential growth |
title_fullStr |
Jacobian algebras with periodic module category and exponential growth |
title_full_unstemmed |
Jacobian algebras with periodic module category and exponential growth |
title_sort |
Jacobian algebras with periodic module category and exponential growth |
dc.creator.none.fl_str_mv |
Valdivieso Díaz, Yadira |
author |
Valdivieso Díaz, Yadira |
author_facet |
Valdivieso Díaz, Yadira |
author_role |
author |
dc.subject.none.fl_str_mv |
Auslander-Reiten Translation Cluster Categories Jacobian Algebras Surfaces with Marked Points Symmetric Algebras |
topic |
Auslander-Reiten Translation Cluster Categories Jacobian Algebras Surfaces with Marked Points Symmetric Algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2. Fil: Valdivieso Díaz, Yadira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/62638 Valdivieso Díaz, Yadira; Jacobian algebras with periodic module category and exponential growth; Academic Press Inc Elsevier Science; Journal of Algebra; 449; 3-2016; 163-174 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/62638 |
identifier_str_mv |
Valdivieso Díaz, Yadira; Jacobian algebras with periodic module category and exponential growth; Academic Press Inc Elsevier Science; Journal of Algebra; 449; 3-2016; 163-174 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.09.051 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869315005517 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269621553463296 |
score |
13.13397 |