Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms

Autores
Chaio, Claudia Alicia
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree.
Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina
Materia
IRREDUCIBLE MORPHISMS
REPRESENTATION TYPE
DEGREES
AUSLANDER-REITEN QUIVER
RADICAL
DEGREES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51167

id CONICETDig_223ef1183e35f1a3780ca5cc6ff2d6b8
oai_identifier_str oai:ri.conicet.gov.ar:11336/51167
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Degrees in Auslander-Reiten components with almost split sequences of at most two middle termsChaio, Claudia AliciaIRREDUCIBLE MORPHISMSREPRESENTATION TYPEDEGREESAUSLANDER-REITEN QUIVERRADICALDEGREEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree.Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; ArgentinaWorld Scientific2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51167Chaio, Claudia Alicia; Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms; World Scientific; Journal of Algebra and its Applications; 14; 7; 9-2015; 1-270219-4988CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498815501066info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498815501066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:02Zoai:ri.conicet.gov.ar:11336/51167instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:02.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
title Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
spellingShingle Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
Chaio, Claudia Alicia
IRREDUCIBLE MORPHISMS
REPRESENTATION TYPE
DEGREES
AUSLANDER-REITEN QUIVER
RADICAL
DEGREES
title_short Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
title_full Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
title_fullStr Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
title_full_unstemmed Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
title_sort Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
dc.creator.none.fl_str_mv Chaio, Claudia Alicia
author Chaio, Claudia Alicia
author_facet Chaio, Claudia Alicia
author_role author
dc.subject.none.fl_str_mv IRREDUCIBLE MORPHISMS
REPRESENTATION TYPE
DEGREES
AUSLANDER-REITEN QUIVER
RADICAL
DEGREES
topic IRREDUCIBLE MORPHISMS
REPRESENTATION TYPE
DEGREES
AUSLANDER-REITEN QUIVER
RADICAL
DEGREES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree.
Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina
description We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51167
Chaio, Claudia Alicia; Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms; World Scientific; Journal of Algebra and its Applications; 14; 7; 9-2015; 1-27
0219-4988
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51167
identifier_str_mv Chaio, Claudia Alicia; Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms; World Scientific; Journal of Algebra and its Applications; 14; 7; 9-2015; 1-27
0219-4988
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498815501066
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498815501066
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613520454320128
score 13.070432