Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms
- Autores
- Chaio, Claudia Alicia
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree.
Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina - Materia
-
IRREDUCIBLE MORPHISMS
REPRESENTATION TYPE
DEGREES
AUSLANDER-REITEN QUIVER
RADICAL
DEGREES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51167
Ver los metadatos del registro completo
id |
CONICETDig_223ef1183e35f1a3780ca5cc6ff2d6b8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51167 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle termsChaio, Claudia AliciaIRREDUCIBLE MORPHISMSREPRESENTATION TYPEDEGREESAUSLANDER-REITEN QUIVERRADICALDEGREEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree.Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; ArgentinaWorld Scientific2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51167Chaio, Claudia Alicia; Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms; World Scientific; Journal of Algebra and its Applications; 14; 7; 9-2015; 1-270219-4988CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498815501066info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498815501066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:02Zoai:ri.conicet.gov.ar:11336/51167instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:02.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms |
title |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms |
spellingShingle |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms Chaio, Claudia Alicia IRREDUCIBLE MORPHISMS REPRESENTATION TYPE DEGREES AUSLANDER-REITEN QUIVER RADICAL DEGREES |
title_short |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms |
title_full |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms |
title_fullStr |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms |
title_full_unstemmed |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms |
title_sort |
Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms |
dc.creator.none.fl_str_mv |
Chaio, Claudia Alicia |
author |
Chaio, Claudia Alicia |
author_facet |
Chaio, Claudia Alicia |
author_role |
author |
dc.subject.none.fl_str_mv |
IRREDUCIBLE MORPHISMS REPRESENTATION TYPE DEGREES AUSLANDER-REITEN QUIVER RADICAL DEGREES |
topic |
IRREDUCIBLE MORPHISMS REPRESENTATION TYPE DEGREES AUSLANDER-REITEN QUIVER RADICAL DEGREES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree. Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina |
description |
We consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51167 Chaio, Claudia Alicia; Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms; World Scientific; Journal of Algebra and its Applications; 14; 7; 9-2015; 1-27 0219-4988 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51167 |
identifier_str_mv |
Chaio, Claudia Alicia; Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms; World Scientific; Journal of Algebra and its Applications; 14; 7; 9-2015; 1-27 0219-4988 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498815501066 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498815501066 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613520454320128 |
score |
13.070432 |