Anisotropic p, q-laplacian equations when p goes to 1
- Autores
- Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.
Fil: Mercaldo, A.. Università Degli Studi Di Napoli Federico Ii; Italia
Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Segura de León, S.. Universidad de Valencia; España
Fil: Trombetti, C.. Università Degli Studi Di Napoli Federico Ii; Italia - Materia
-
Anisotropic Problems
-Laplacian Equation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16519
Ver los metadatos del registro completo
| id |
CONICETDig_c39caf55e8f9e05a588148fe3dadd1e9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16519 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Anisotropic p, q-laplacian equations when p goes to 1Mercaldo, A.Rossi, Julio DanielSegura de León, S.Trombetti, C.Anisotropic Problems-Laplacian Equationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.Fil: Mercaldo, A.. Università Degli Studi Di Napoli Federico Ii; ItaliaFil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Segura de León, S.. Universidad de Valencia; EspañaFil: Trombetti, C.. Università Degli Studi Di Napoli Federico Ii; ItaliaElsevier2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16519Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.; Anisotropic p, q-laplacian equations when p goes to 1; Elsevier; Journal Of Nonlinear Analysis; 73; 11; 12-2010; 3546-35600362-546Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2010.07.030info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X10005109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:49:12Zoai:ri.conicet.gov.ar:11336/16519instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:49:12.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Anisotropic p, q-laplacian equations when p goes to 1 |
| title |
Anisotropic p, q-laplacian equations when p goes to 1 |
| spellingShingle |
Anisotropic p, q-laplacian equations when p goes to 1 Mercaldo, A. Anisotropic Problems -Laplacian Equation |
| title_short |
Anisotropic p, q-laplacian equations when p goes to 1 |
| title_full |
Anisotropic p, q-laplacian equations when p goes to 1 |
| title_fullStr |
Anisotropic p, q-laplacian equations when p goes to 1 |
| title_full_unstemmed |
Anisotropic p, q-laplacian equations when p goes to 1 |
| title_sort |
Anisotropic p, q-laplacian equations when p goes to 1 |
| dc.creator.none.fl_str_mv |
Mercaldo, A. Rossi, Julio Daniel Segura de León, S. Trombetti, C. |
| author |
Mercaldo, A. |
| author_facet |
Mercaldo, A. Rossi, Julio Daniel Segura de León, S. Trombetti, C. |
| author_role |
author |
| author2 |
Rossi, Julio Daniel Segura de León, S. Trombetti, C. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Anisotropic Problems -Laplacian Equation |
| topic |
Anisotropic Problems -Laplacian Equation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown. Fil: Mercaldo, A.. Università Degli Studi Di Napoli Federico Ii; Italia Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Segura de León, S.. Universidad de Valencia; España Fil: Trombetti, C.. Università Degli Studi Di Napoli Federico Ii; Italia |
| description |
In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16519 Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.; Anisotropic p, q-laplacian equations when p goes to 1; Elsevier; Journal Of Nonlinear Analysis; 73; 11; 12-2010; 3546-3560 0362-546X |
| url |
http://hdl.handle.net/11336/16519 |
| identifier_str_mv |
Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.; Anisotropic p, q-laplacian equations when p goes to 1; Elsevier; Journal Of Nonlinear Analysis; 73; 11; 12-2010; 3546-3560 0362-546X |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2010.07.030 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X10005109 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598057414819840 |
| score |
13.24909 |