Anisotropic p, q-laplacian equations when p goes to 1

Autores
Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.
Fil: Mercaldo, A.. Università Degli Studi Di Napoli Federico Ii; Italia
Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Segura de León, S.. Universidad de Valencia; España
Fil: Trombetti, C.. Università Degli Studi Di Napoli Federico Ii; Italia
Materia
Anisotropic Problems
-Laplacian Equation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16519

id CONICETDig_c39caf55e8f9e05a588148fe3dadd1e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/16519
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Anisotropic p, q-laplacian equations when p goes to 1Mercaldo, A.Rossi, Julio DanielSegura de León, S.Trombetti, C.Anisotropic Problems-Laplacian Equationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.Fil: Mercaldo, A.. Università Degli Studi Di Napoli Federico Ii; ItaliaFil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Segura de León, S.. Universidad de Valencia; EspañaFil: Trombetti, C.. Università Degli Studi Di Napoli Federico Ii; ItaliaElsevier2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16519Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.; Anisotropic p, q-laplacian equations when p goes to 1; Elsevier; Journal Of Nonlinear Analysis; 73; 11; 12-2010; 3546-35600362-546Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2010.07.030info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X10005109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:49:12Zoai:ri.conicet.gov.ar:11336/16519instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:49:12.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Anisotropic p, q-laplacian equations when p goes to 1
title Anisotropic p, q-laplacian equations when p goes to 1
spellingShingle Anisotropic p, q-laplacian equations when p goes to 1
Mercaldo, A.
Anisotropic Problems
-Laplacian Equation
title_short Anisotropic p, q-laplacian equations when p goes to 1
title_full Anisotropic p, q-laplacian equations when p goes to 1
title_fullStr Anisotropic p, q-laplacian equations when p goes to 1
title_full_unstemmed Anisotropic p, q-laplacian equations when p goes to 1
title_sort Anisotropic p, q-laplacian equations when p goes to 1
dc.creator.none.fl_str_mv Mercaldo, A.
Rossi, Julio Daniel
Segura de León, S.
Trombetti, C.
author Mercaldo, A.
author_facet Mercaldo, A.
Rossi, Julio Daniel
Segura de León, S.
Trombetti, C.
author_role author
author2 Rossi, Julio Daniel
Segura de León, S.
Trombetti, C.
author2_role author
author
author
dc.subject.none.fl_str_mv Anisotropic Problems
-Laplacian Equation
topic Anisotropic Problems
-Laplacian Equation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.
Fil: Mercaldo, A.. Università Degli Studi Di Napoli Federico Ii; Italia
Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Segura de León, S.. Universidad de Valencia; España
Fil: Trombetti, C.. Università Degli Studi Di Napoli Federico Ii; Italia
description In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16519
Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.; Anisotropic p, q-laplacian equations when p goes to 1; Elsevier; Journal Of Nonlinear Analysis; 73; 11; 12-2010; 3546-3560
0362-546X
url http://hdl.handle.net/11336/16519
identifier_str_mv Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.; Anisotropic p, q-laplacian equations when p goes to 1; Elsevier; Journal Of Nonlinear Analysis; 73; 11; 12-2010; 3546-3560
0362-546X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2010.07.030
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X10005109
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598057414819840
score 13.24909