Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures

Autores
Cotabarren, Ivana María; Cruces, Sofia; Palla, Camila Andrea
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Among the potential applications of 3D printing, the development of products with personalized characteristics in the area of food and nutraceuticals represents an important field that must still be explored. The aim of this work was to evaluate the production of nutraceutical oral forms by extrusion-based 3D printing (E3DP) using mixtures of monoglycerides (MG) oleogels and phytosterols (PS) as printing materials. These materials were obtained using MG (10 or 20 %wt), high oleic sunflower oil and variable amounts of PS (20 - 50 %wt PS/oleogel). An ad-hoc extrusion 3D printer composed of a heated syringe and a cooling build platform was used. Rheological tests were carried out to determine the mixtures gel point, in order to select appropriate printing temperatures, as well as the yield stress of the final materials. Hardness of printed forms was obtained by compression tests. Additionally, oral forms were produced by manual extrusion using molds for comparison. It was found that oral forms were successfully printed when using mixtures containing a maximum of 30 and 40 %wt PS/oleogel for oleogels formulated with 10 and 20 %wt of MG, respectively. Moreover, the best printed forms corresponded to the mixtures with the lowest gelation temperatures. These printed forms were structurally stable, with uniform weight and shape, and maximum hardness of 12.55 N. Hardness values of printed oral forms did not show a correlation with those obtained by manual extrusion using molds, indicating that this parameter was affected by solid composition, cooling rate and the fragility generated for layers superposition. In conclusion, it was demonstrated that mixtures of MG oleogels and PS can be used for E3DP production of nutraceutical oral forms suggesting that oleogels have excellent potential as materials able to incorporate liposoluble active ingredients to be used as extrusion printing materials.
Fil: Cotabarren, Ivana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Cruces, Sofia. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Palla, Camila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Materia
3D PRINTING
NUTRACEUTICALS
OLEOGELS
PHYTOSTEROLS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111980

id CONICETDig_8f1a7434aae02c3839f52ac4da668a70
oai_identifier_str oai:ri.conicet.gov.ar:11336/111980
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixturesCotabarren, Ivana MaríaCruces, SofiaPalla, Camila Andrea3D PRINTINGNUTRACEUTICALSOLEOGELSPHYTOSTEROLShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Among the potential applications of 3D printing, the development of products with personalized characteristics in the area of food and nutraceuticals represents an important field that must still be explored. The aim of this work was to evaluate the production of nutraceutical oral forms by extrusion-based 3D printing (E3DP) using mixtures of monoglycerides (MG) oleogels and phytosterols (PS) as printing materials. These materials were obtained using MG (10 or 20 %wt), high oleic sunflower oil and variable amounts of PS (20 - 50 %wt PS/oleogel). An ad-hoc extrusion 3D printer composed of a heated syringe and a cooling build platform was used. Rheological tests were carried out to determine the mixtures gel point, in order to select appropriate printing temperatures, as well as the yield stress of the final materials. Hardness of printed forms was obtained by compression tests. Additionally, oral forms were produced by manual extrusion using molds for comparison. It was found that oral forms were successfully printed when using mixtures containing a maximum of 30 and 40 %wt PS/oleogel for oleogels formulated with 10 and 20 %wt of MG, respectively. Moreover, the best printed forms corresponded to the mixtures with the lowest gelation temperatures. These printed forms were structurally stable, with uniform weight and shape, and maximum hardness of 12.55 N. Hardness values of printed oral forms did not show a correlation with those obtained by manual extrusion using molds, indicating that this parameter was affected by solid composition, cooling rate and the fragility generated for layers superposition. In conclusion, it was demonstrated that mixtures of MG oleogels and PS can be used for E3DP production of nutraceutical oral forms suggesting that oleogels have excellent potential as materials able to incorporate liposoluble active ingredients to be used as extrusion printing materials.Fil: Cotabarren, Ivana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Cruces, Sofia. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Palla, Camila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaElsevier Science2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111980Cotabarren, Ivana María; Cruces, Sofia; Palla, Camila Andrea; Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures; Elsevier Science; Food Research International; 126; 12-2019; 1-110963-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0963996919305629info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodres.2019.108676info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:06Zoai:ri.conicet.gov.ar:11336/111980instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:07.187CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
title Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
spellingShingle Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
Cotabarren, Ivana María
3D PRINTING
NUTRACEUTICALS
OLEOGELS
PHYTOSTEROLS
title_short Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
title_full Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
title_fullStr Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
title_full_unstemmed Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
title_sort Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
dc.creator.none.fl_str_mv Cotabarren, Ivana María
Cruces, Sofia
Palla, Camila Andrea
author Cotabarren, Ivana María
author_facet Cotabarren, Ivana María
Cruces, Sofia
Palla, Camila Andrea
author_role author
author2 Cruces, Sofia
Palla, Camila Andrea
author2_role author
author
dc.subject.none.fl_str_mv 3D PRINTING
NUTRACEUTICALS
OLEOGELS
PHYTOSTEROLS
topic 3D PRINTING
NUTRACEUTICALS
OLEOGELS
PHYTOSTEROLS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Among the potential applications of 3D printing, the development of products with personalized characteristics in the area of food and nutraceuticals represents an important field that must still be explored. The aim of this work was to evaluate the production of nutraceutical oral forms by extrusion-based 3D printing (E3DP) using mixtures of monoglycerides (MG) oleogels and phytosterols (PS) as printing materials. These materials were obtained using MG (10 or 20 %wt), high oleic sunflower oil and variable amounts of PS (20 - 50 %wt PS/oleogel). An ad-hoc extrusion 3D printer composed of a heated syringe and a cooling build platform was used. Rheological tests were carried out to determine the mixtures gel point, in order to select appropriate printing temperatures, as well as the yield stress of the final materials. Hardness of printed forms was obtained by compression tests. Additionally, oral forms were produced by manual extrusion using molds for comparison. It was found that oral forms were successfully printed when using mixtures containing a maximum of 30 and 40 %wt PS/oleogel for oleogels formulated with 10 and 20 %wt of MG, respectively. Moreover, the best printed forms corresponded to the mixtures with the lowest gelation temperatures. These printed forms were structurally stable, with uniform weight and shape, and maximum hardness of 12.55 N. Hardness values of printed oral forms did not show a correlation with those obtained by manual extrusion using molds, indicating that this parameter was affected by solid composition, cooling rate and the fragility generated for layers superposition. In conclusion, it was demonstrated that mixtures of MG oleogels and PS can be used for E3DP production of nutraceutical oral forms suggesting that oleogels have excellent potential as materials able to incorporate liposoluble active ingredients to be used as extrusion printing materials.
Fil: Cotabarren, Ivana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Cruces, Sofia. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Palla, Camila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
description Among the potential applications of 3D printing, the development of products with personalized characteristics in the area of food and nutraceuticals represents an important field that must still be explored. The aim of this work was to evaluate the production of nutraceutical oral forms by extrusion-based 3D printing (E3DP) using mixtures of monoglycerides (MG) oleogels and phytosterols (PS) as printing materials. These materials were obtained using MG (10 or 20 %wt), high oleic sunflower oil and variable amounts of PS (20 - 50 %wt PS/oleogel). An ad-hoc extrusion 3D printer composed of a heated syringe and a cooling build platform was used. Rheological tests were carried out to determine the mixtures gel point, in order to select appropriate printing temperatures, as well as the yield stress of the final materials. Hardness of printed forms was obtained by compression tests. Additionally, oral forms were produced by manual extrusion using molds for comparison. It was found that oral forms were successfully printed when using mixtures containing a maximum of 30 and 40 %wt PS/oleogel for oleogels formulated with 10 and 20 %wt of MG, respectively. Moreover, the best printed forms corresponded to the mixtures with the lowest gelation temperatures. These printed forms were structurally stable, with uniform weight and shape, and maximum hardness of 12.55 N. Hardness values of printed oral forms did not show a correlation with those obtained by manual extrusion using molds, indicating that this parameter was affected by solid composition, cooling rate and the fragility generated for layers superposition. In conclusion, it was demonstrated that mixtures of MG oleogels and PS can be used for E3DP production of nutraceutical oral forms suggesting that oleogels have excellent potential as materials able to incorporate liposoluble active ingredients to be used as extrusion printing materials.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111980
Cotabarren, Ivana María; Cruces, Sofia; Palla, Camila Andrea; Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures; Elsevier Science; Food Research International; 126; 12-2019; 1-11
0963-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111980
identifier_str_mv Cotabarren, Ivana María; Cruces, Sofia; Palla, Camila Andrea; Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures; Elsevier Science; Food Research International; 126; 12-2019; 1-11
0963-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0963996919305629
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodres.2019.108676
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269783021584384
score 13.13397