Harmonic reconstruction systems

Autores
Morillas, Patricia Mariela
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper considers group reconstruction systems (GRS’s), for finite dimensional real or complex Hilbert spaces H, that are associated with unitary representations of finite abelian groups. The relation between these GRS’s and the generalized Fourier matrix is established. A special type of Parseval GRS, called harmonic reconstruction system (HRS), is defined. It is shown that there exist HRS’s that present maximal robustness to erasures given characterizations of certain families.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - San Luis. Instituto de Matematica Aplicada de San Luis; Argentina;
Materia
Reconstruction systems
Fusion frames
g-frames
Maximal robustness to erasures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1079

id CONICETDig_c0ead997eb25c7eab828da0befb02691
oai_identifier_str oai:ri.conicet.gov.ar:11336/1079
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Harmonic reconstruction systemsMorillas, Patricia MarielaReconstruction systemsFusion framesg-framesMaximal robustness to erasureshttps://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1This paper considers group reconstruction systems (GRS’s), for finite dimensional real or complex Hilbert spaces H, that are associated with unitary representations of finite abelian groups. The relation between these GRS’s and the generalized Fourier matrix is established. A special type of Parseval GRS, called harmonic reconstruction system (HRS), is defined. It is shown that there exist HRS’s that present maximal robustness to erasures given characterizations of certain families.Fil: Morillas, Patricia Mariela. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - San Luis. Instituto de Matematica Aplicada de San Luis; Argentina;Int Linear Algebra Soc2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1079Morillas, Patricia Mariela; Harmonic reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 26; 10-2013; 692-7051081-3810enginfo:eu-repo/semantics/altIdentifier/url/http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol26_pp692-705.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:40Zoai:ri.conicet.gov.ar:11336/1079instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:40.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Harmonic reconstruction systems
title Harmonic reconstruction systems
spellingShingle Harmonic reconstruction systems
Morillas, Patricia Mariela
Reconstruction systems
Fusion frames
g-frames
Maximal robustness to erasures
title_short Harmonic reconstruction systems
title_full Harmonic reconstruction systems
title_fullStr Harmonic reconstruction systems
title_full_unstemmed Harmonic reconstruction systems
title_sort Harmonic reconstruction systems
dc.creator.none.fl_str_mv Morillas, Patricia Mariela
author Morillas, Patricia Mariela
author_facet Morillas, Patricia Mariela
author_role author
dc.subject.none.fl_str_mv Reconstruction systems
Fusion frames
g-frames
Maximal robustness to erasures
topic Reconstruction systems
Fusion frames
g-frames
Maximal robustness to erasures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
dc.description.none.fl_txt_mv This paper considers group reconstruction systems (GRS’s), for finite dimensional real or complex Hilbert spaces H, that are associated with unitary representations of finite abelian groups. The relation between these GRS’s and the generalized Fourier matrix is established. A special type of Parseval GRS, called harmonic reconstruction system (HRS), is defined. It is shown that there exist HRS’s that present maximal robustness to erasures given characterizations of certain families.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - San Luis. Instituto de Matematica Aplicada de San Luis; Argentina;
description This paper considers group reconstruction systems (GRS’s), for finite dimensional real or complex Hilbert spaces H, that are associated with unitary representations of finite abelian groups. The relation between these GRS’s and the generalized Fourier matrix is established. A special type of Parseval GRS, called harmonic reconstruction system (HRS), is defined. It is shown that there exist HRS’s that present maximal robustness to erasures given characterizations of certain families.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1079
Morillas, Patricia Mariela; Harmonic reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 26; 10-2013; 692-705
1081-3810
url http://hdl.handle.net/11336/1079
identifier_str_mv Morillas, Patricia Mariela; Harmonic reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 26; 10-2013; 692-705
1081-3810
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol26_pp692-705.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Int Linear Algebra Soc
publisher.none.fl_str_mv Int Linear Algebra Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613457385619456
score 13.070432