Group reconstruction systems
- Autores
- Morillas, Patricia Mariela
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina - Materia
-
Reconstruction systems
Fusion frames
g-frames
Group representation
Robustness
Gran matrix - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15531
Ver los metadatos del registro completo
id |
CONICETDig_0f249659da1e3a1562436df3cfc85d20 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15531 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Group reconstruction systemsMorillas, Patricia MarielaReconstruction systemsFusion framesg-framesGroup representationRobustnessGran matrixhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s.Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; ArgentinaInt Linear Algebra Soc2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15531Morillas, Patricia Mariela; Group reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 22; 9-2011; 875-9111081-3810enginfo:eu-repo/semantics/altIdentifier/url/http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp875-911.pdfinfo:eu-repo/semantics/altIdentifier/url/http://repository.uwyo.edu/ela/vol22/iss1/59/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:26Zoai:ri.conicet.gov.ar:11336/15531instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:26.929CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Group reconstruction systems |
title |
Group reconstruction systems |
spellingShingle |
Group reconstruction systems Morillas, Patricia Mariela Reconstruction systems Fusion frames g-frames Group representation Robustness Gran matrix |
title_short |
Group reconstruction systems |
title_full |
Group reconstruction systems |
title_fullStr |
Group reconstruction systems |
title_full_unstemmed |
Group reconstruction systems |
title_sort |
Group reconstruction systems |
dc.creator.none.fl_str_mv |
Morillas, Patricia Mariela |
author |
Morillas, Patricia Mariela |
author_facet |
Morillas, Patricia Mariela |
author_role |
author |
dc.subject.none.fl_str_mv |
Reconstruction systems Fusion frames g-frames Group representation Robustness Gran matrix |
topic |
Reconstruction systems Fusion frames g-frames Group representation Robustness Gran matrix |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s. Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina |
description |
We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15531 Morillas, Patricia Mariela; Group reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 22; 9-2011; 875-911 1081-3810 |
url |
http://hdl.handle.net/11336/15531 |
identifier_str_mv |
Morillas, Patricia Mariela; Group reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 22; 9-2011; 875-911 1081-3810 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp875-911.pdf info:eu-repo/semantics/altIdentifier/url/http://repository.uwyo.edu/ela/vol22/iss1/59/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Int Linear Algebra Soc |
publisher.none.fl_str_mv |
Int Linear Algebra Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613808188817408 |
score |
13.070432 |