Group reconstruction systems

Autores
Morillas, Patricia Mariela
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
Materia
Reconstruction systems
Fusion frames
g-frames
Group representation
Robustness
Gran matrix
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15531

id CONICETDig_0f249659da1e3a1562436df3cfc85d20
oai_identifier_str oai:ri.conicet.gov.ar:11336/15531
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Group reconstruction systemsMorillas, Patricia MarielaReconstruction systemsFusion framesg-framesGroup representationRobustnessGran matrixhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s.Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; ArgentinaInt Linear Algebra Soc2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15531Morillas, Patricia Mariela; Group reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 22; 9-2011; 875-9111081-3810enginfo:eu-repo/semantics/altIdentifier/url/http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp875-911.pdfinfo:eu-repo/semantics/altIdentifier/url/http://repository.uwyo.edu/ela/vol22/iss1/59/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:26Zoai:ri.conicet.gov.ar:11336/15531instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:26.929CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Group reconstruction systems
title Group reconstruction systems
spellingShingle Group reconstruction systems
Morillas, Patricia Mariela
Reconstruction systems
Fusion frames
g-frames
Group representation
Robustness
Gran matrix
title_short Group reconstruction systems
title_full Group reconstruction systems
title_fullStr Group reconstruction systems
title_full_unstemmed Group reconstruction systems
title_sort Group reconstruction systems
dc.creator.none.fl_str_mv Morillas, Patricia Mariela
author Morillas, Patricia Mariela
author_facet Morillas, Patricia Mariela
author_role author
dc.subject.none.fl_str_mv Reconstruction systems
Fusion frames
g-frames
Group representation
Robustness
Gran matrix
topic Reconstruction systems
Fusion frames
g-frames
Group representation
Robustness
Gran matrix
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
description We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s.
publishDate 2011
dc.date.none.fl_str_mv 2011-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15531
Morillas, Patricia Mariela; Group reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 22; 9-2011; 875-911
1081-3810
url http://hdl.handle.net/11336/15531
identifier_str_mv Morillas, Patricia Mariela; Group reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 22; 9-2011; 875-911
1081-3810
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp875-911.pdf
info:eu-repo/semantics/altIdentifier/url/http://repository.uwyo.edu/ela/vol22/iss1/59/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Int Linear Algebra Soc
publisher.none.fl_str_mv Int Linear Algebra Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613808188817408
score 13.070432