Key concepts and a world‐wide look at plant recruitment networks
- Autores
- Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; Alifriqui, Mohamed; Allen, David; Al Namazi, Ali A.; Armas, Cristina; Bastida, Jesús M.; Bellido, Tono; Paterno, Gustavo Brant; Briceño, Herbert; Camargo de Oliveira, Ricardo A.; Campoy, Josefina G.; Chaieb, Ghassen; Chu, Chengjin; Constantinou, Elena; Delalandre, Léo; Duarte, Milen; Faife Cabrera, Michel; Fazlioglu, Fatih; Fernando, Edwino S.; Flores, Joel; Gavini, Sabrina; Usta Baykal, Nurbahar; Valiente Banuet, Alfonso; Vargas Colin, Alexa; Vogiatzakis, Ioannis; Zamora, Regino
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.
Fil: Alcántara, Julio M.. Universidad de Jaén; España. Andalusian Interuniversity Institute for Earth System Research; España
Fil: Verdú, Miguel. Centro de Investigaciones Sobre Desertificación; España
Fil: Garrido, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Montesinos Navarro, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Alifriqui, Mohamed. Cadi Ayyad University; Marruecos
Fil: Allen, David. Middlebury College; Estados Unidos
Fil: Al Namazi, Ali A.. King Abdulaziz City for Science and Technology; Arabia Saudita
Fil: Armas, Cristina. Consejo Superior de Investigaciones Científicas. Estación Experimental de Zonas Aridas; España
Fil: Bastida, Jesús M.. Estación Experimental del Zadín; España
Fil: Bellido, Tono. Vivers Municipals de El Saler; España
Fil: Paterno, Gustavo Brant. Georg-August-Universität Göttingen; Alemania
Fil: Briceño, Herbert. Universidad Central de Venezuela; Venezuela
Fil: Camargo de Oliveira, Ricardo A.. Universidade Federal do Paraná; Brasil
Fil: Campoy, Josefina G.. Universidad de Santiago de Compostela; España
Fil: Chaieb, Ghassen. University of Bordeaux; Francia
Fil: Chu, Chengjin. Sun Yat-sen Universit; China
Fil: Constantinou, Elena. Open University of Cyprus; Chipre
Fil: Delalandre, Léo. Centre d'écologie fonctionnelle et évolutive; Francia
Fil: Duarte, Milen. Universidad Austral de Chile; Chile
Fil: Faife Cabrera, Michel. Universidad Austral de Chile; Chile
Fil: Fazlioglu, Fatih. Ordu University; Turquía
Fil: Fernando, Edwino S.. University of the Philippines; Filipinas
Fil: Flores, Joel. Instituto Potosino de Investigación Científica y Tecnológica; México
Fil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Usta Baykal, Nurbahar. Hacettepe University; Turquía
Fil: Valiente Banuet, Alfonso. Universidad Nacional Autónoma de México; México
Fil: Vargas Colin, Alexa. Instituto Potosino de Investigación Científica y Tecnológica; México
Fil: Vogiatzakis, Ioannis. Open University of Cyprus; Chipre. University of Bari Aldo Moro; Italia
Fil: Zamora, Regino. Universidad de Granada; España - Materia
-
RECRUITMENT NETWORKS
FACILITATION
PLANT PLANT INTERACTIONS
canopy service - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/276638
Ver los metadatos del registro completo
| id |
CONICETDig_c0e333031534128fd4df246769cbc0bb |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/276638 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Key concepts and a world‐wide look at plant recruitment networksAlcántara, Julio M.Verdú, MiguelGarrido, José LuisMontesinos Navarro, AliciaAizen, Marcelo AdrianAlifriqui, MohamedAllen, DavidAl Namazi, Ali A.Armas, CristinaBastida, Jesús M.Bellido, TonoPaterno, Gustavo BrantBriceño, HerbertCamargo de Oliveira, Ricardo A.Campoy, Josefina G.Chaieb, GhassenChu, ChengjinConstantinou, ElenaDelalandre, LéoDuarte, MilenFaife Cabrera, MichelFazlioglu, FatihFernando, Edwino S.Flores, JoelGavini, SabrinaUsta Baykal, NurbaharValiente Banuet, AlfonsoVargas Colin, AlexaVogiatzakis, IoannisZamora, ReginoRECRUITMENT NETWORKSFACILITATIONPLANT PLANT INTERACTIONScanopy servicehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.Fil: Alcántara, Julio M.. Universidad de Jaén; España. Andalusian Interuniversity Institute for Earth System Research; EspañaFil: Verdú, Miguel. Centro de Investigaciones Sobre Desertificación; EspañaFil: Garrido, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Montesinos Navarro, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Alifriqui, Mohamed. Cadi Ayyad University; MarruecosFil: Allen, David. Middlebury College; Estados UnidosFil: Al Namazi, Ali A.. King Abdulaziz City for Science and Technology; Arabia SauditaFil: Armas, Cristina. Consejo Superior de Investigaciones Científicas. Estación Experimental de Zonas Aridas; EspañaFil: Bastida, Jesús M.. Estación Experimental del Zadín; EspañaFil: Bellido, Tono. Vivers Municipals de El Saler; EspañaFil: Paterno, Gustavo Brant. Georg-August-Universität Göttingen; AlemaniaFil: Briceño, Herbert. Universidad Central de Venezuela; VenezuelaFil: Camargo de Oliveira, Ricardo A.. Universidade Federal do Paraná; BrasilFil: Campoy, Josefina G.. Universidad de Santiago de Compostela; EspañaFil: Chaieb, Ghassen. University of Bordeaux; FranciaFil: Chu, Chengjin. Sun Yat-sen Universit; ChinaFil: Constantinou, Elena. Open University of Cyprus; ChipreFil: Delalandre, Léo. Centre d'écologie fonctionnelle et évolutive; FranciaFil: Duarte, Milen. Universidad Austral de Chile; ChileFil: Faife Cabrera, Michel. Universidad Austral de Chile; ChileFil: Fazlioglu, Fatih. Ordu University; TurquíaFil: Fernando, Edwino S.. University of the Philippines; FilipinasFil: Flores, Joel. Instituto Potosino de Investigación Científica y Tecnológica; MéxicoFil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Usta Baykal, Nurbahar. Hacettepe University; TurquíaFil: Valiente Banuet, Alfonso. Universidad Nacional Autónoma de México; MéxicoFil: Vargas Colin, Alexa. Instituto Potosino de Investigación Científica y Tecnológica; MéxicoFil: Vogiatzakis, Ioannis. Open University of Cyprus; Chipre. University of Bari Aldo Moro; ItaliaFil: Zamora, Regino. Universidad de Granada; EspañaWiley Blackwell Publishing, Inc2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276638Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; et al.; Key concepts and a world‐wide look at plant recruitment networks; Wiley Blackwell Publishing, Inc; Biological Reviews; 100; 3; 12-2024; 1127-11511464-7931CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/brv.13177info:eu-repo/semantics/altIdentifier/doi/10.1111/brv.13177info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:55:24Zoai:ri.conicet.gov.ar:11336/276638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:55:24.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Key concepts and a world‐wide look at plant recruitment networks |
| title |
Key concepts and a world‐wide look at plant recruitment networks |
| spellingShingle |
Key concepts and a world‐wide look at plant recruitment networks Alcántara, Julio M. RECRUITMENT NETWORKS FACILITATION PLANT PLANT INTERACTIONS canopy service |
| title_short |
Key concepts and a world‐wide look at plant recruitment networks |
| title_full |
Key concepts and a world‐wide look at plant recruitment networks |
| title_fullStr |
Key concepts and a world‐wide look at plant recruitment networks |
| title_full_unstemmed |
Key concepts and a world‐wide look at plant recruitment networks |
| title_sort |
Key concepts and a world‐wide look at plant recruitment networks |
| dc.creator.none.fl_str_mv |
Alcántara, Julio M. Verdú, Miguel Garrido, José Luis Montesinos Navarro, Alicia Aizen, Marcelo Adrian Alifriqui, Mohamed Allen, David Al Namazi, Ali A. Armas, Cristina Bastida, Jesús M. Bellido, Tono Paterno, Gustavo Brant Briceño, Herbert Camargo de Oliveira, Ricardo A. Campoy, Josefina G. Chaieb, Ghassen Chu, Chengjin Constantinou, Elena Delalandre, Léo Duarte, Milen Faife Cabrera, Michel Fazlioglu, Fatih Fernando, Edwino S. Flores, Joel Gavini, Sabrina Usta Baykal, Nurbahar Valiente Banuet, Alfonso Vargas Colin, Alexa Vogiatzakis, Ioannis Zamora, Regino |
| author |
Alcántara, Julio M. |
| author_facet |
Alcántara, Julio M. Verdú, Miguel Garrido, José Luis Montesinos Navarro, Alicia Aizen, Marcelo Adrian Alifriqui, Mohamed Allen, David Al Namazi, Ali A. Armas, Cristina Bastida, Jesús M. Bellido, Tono Paterno, Gustavo Brant Briceño, Herbert Camargo de Oliveira, Ricardo A. Campoy, Josefina G. Chaieb, Ghassen Chu, Chengjin Constantinou, Elena Delalandre, Léo Duarte, Milen Faife Cabrera, Michel Fazlioglu, Fatih Fernando, Edwino S. Flores, Joel Gavini, Sabrina Usta Baykal, Nurbahar Valiente Banuet, Alfonso Vargas Colin, Alexa Vogiatzakis, Ioannis Zamora, Regino |
| author_role |
author |
| author2 |
Verdú, Miguel Garrido, José Luis Montesinos Navarro, Alicia Aizen, Marcelo Adrian Alifriqui, Mohamed Allen, David Al Namazi, Ali A. Armas, Cristina Bastida, Jesús M. Bellido, Tono Paterno, Gustavo Brant Briceño, Herbert Camargo de Oliveira, Ricardo A. Campoy, Josefina G. Chaieb, Ghassen Chu, Chengjin Constantinou, Elena Delalandre, Léo Duarte, Milen Faife Cabrera, Michel Fazlioglu, Fatih Fernando, Edwino S. Flores, Joel Gavini, Sabrina Usta Baykal, Nurbahar Valiente Banuet, Alfonso Vargas Colin, Alexa Vogiatzakis, Ioannis Zamora, Regino |
| author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
RECRUITMENT NETWORKS FACILITATION PLANT PLANT INTERACTIONS canopy service |
| topic |
RECRUITMENT NETWORKS FACILITATION PLANT PLANT INTERACTIONS canopy service |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology. Fil: Alcántara, Julio M.. Universidad de Jaén; España. Andalusian Interuniversity Institute for Earth System Research; España Fil: Verdú, Miguel. Centro de Investigaciones Sobre Desertificación; España Fil: Garrido, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Montesinos Navarro, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Alifriqui, Mohamed. Cadi Ayyad University; Marruecos Fil: Allen, David. Middlebury College; Estados Unidos Fil: Al Namazi, Ali A.. King Abdulaziz City for Science and Technology; Arabia Saudita Fil: Armas, Cristina. Consejo Superior de Investigaciones Científicas. Estación Experimental de Zonas Aridas; España Fil: Bastida, Jesús M.. Estación Experimental del Zadín; España Fil: Bellido, Tono. Vivers Municipals de El Saler; España Fil: Paterno, Gustavo Brant. Georg-August-Universität Göttingen; Alemania Fil: Briceño, Herbert. Universidad Central de Venezuela; Venezuela Fil: Camargo de Oliveira, Ricardo A.. Universidade Federal do Paraná; Brasil Fil: Campoy, Josefina G.. Universidad de Santiago de Compostela; España Fil: Chaieb, Ghassen. University of Bordeaux; Francia Fil: Chu, Chengjin. Sun Yat-sen Universit; China Fil: Constantinou, Elena. Open University of Cyprus; Chipre Fil: Delalandre, Léo. Centre d'écologie fonctionnelle et évolutive; Francia Fil: Duarte, Milen. Universidad Austral de Chile; Chile Fil: Faife Cabrera, Michel. Universidad Austral de Chile; Chile Fil: Fazlioglu, Fatih. Ordu University; Turquía Fil: Fernando, Edwino S.. University of the Philippines; Filipinas Fil: Flores, Joel. Instituto Potosino de Investigación Científica y Tecnológica; México Fil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Usta Baykal, Nurbahar. Hacettepe University; Turquía Fil: Valiente Banuet, Alfonso. Universidad Nacional Autónoma de México; México Fil: Vargas Colin, Alexa. Instituto Potosino de Investigación Científica y Tecnológica; México Fil: Vogiatzakis, Ioannis. Open University of Cyprus; Chipre. University of Bari Aldo Moro; Italia Fil: Zamora, Regino. Universidad de Granada; España |
| description |
Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/276638 Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; et al.; Key concepts and a world‐wide look at plant recruitment networks; Wiley Blackwell Publishing, Inc; Biological Reviews; 100; 3; 12-2024; 1127-1151 1464-7931 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/276638 |
| identifier_str_mv |
Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; et al.; Key concepts and a world‐wide look at plant recruitment networks; Wiley Blackwell Publishing, Inc; Biological Reviews; 100; 3; 12-2024; 1127-1151 1464-7931 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/brv.13177 info:eu-repo/semantics/altIdentifier/doi/10.1111/brv.13177 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335451792211968 |
| score |
12.952241 |