Key concepts and a world‐wide look at plant recruitment networks

Autores
Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; Alifriqui, Mohamed; Allen, David; Al Namazi, Ali A.; Armas, Cristina; Bastida, Jesús M.; Bellido, Tono; Paterno, Gustavo Brant; Briceño, Herbert; Camargo de Oliveira, Ricardo A.; Campoy, Josefina G.; Chaieb, Ghassen; Chu, Chengjin; Constantinou, Elena; Delalandre, Léo; Duarte, Milen; Faife Cabrera, Michel; Fazlioglu, Fatih; Fernando, Edwino S.; Flores, Joel; Gavini, Sabrina; Usta Baykal, Nurbahar; Valiente Banuet, Alfonso; Vargas Colin, Alexa; Vogiatzakis, Ioannis; Zamora, Regino
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.
Fil: Alcántara, Julio M.. Universidad de Jaén; España. Andalusian Interuniversity Institute for Earth System Research; España
Fil: Verdú, Miguel. Centro de Investigaciones Sobre Desertificación; España
Fil: Garrido, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Montesinos Navarro, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Alifriqui, Mohamed. Cadi Ayyad University; Marruecos
Fil: Allen, David. Middlebury College; Estados Unidos
Fil: Al Namazi, Ali A.. King Abdulaziz City for Science and Technology; Arabia Saudita
Fil: Armas, Cristina. Consejo Superior de Investigaciones Científicas. Estación Experimental de Zonas Aridas; España
Fil: Bastida, Jesús M.. Estación Experimental del Zadín; España
Fil: Bellido, Tono. Vivers Municipals de El Saler; España
Fil: Paterno, Gustavo Brant. Georg-August-Universität Göttingen; Alemania
Fil: Briceño, Herbert. Universidad Central de Venezuela; Venezuela
Fil: Camargo de Oliveira, Ricardo A.. Universidade Federal do Paraná; Brasil
Fil: Campoy, Josefina G.. Universidad de Santiago de Compostela; España
Fil: Chaieb, Ghassen. University of Bordeaux; Francia
Fil: Chu, Chengjin. Sun Yat-sen Universit; China
Fil: Constantinou, Elena. Open University of Cyprus; Chipre
Fil: Delalandre, Léo. Centre d'écologie fonctionnelle et évolutive; Francia
Fil: Duarte, Milen. Universidad Austral de Chile; Chile
Fil: Faife Cabrera, Michel. Universidad Austral de Chile; Chile
Fil: Fazlioglu, Fatih. Ordu University; Turquía
Fil: Fernando, Edwino S.. University of the Philippines; Filipinas
Fil: Flores, Joel. Instituto Potosino de Investigación Científica y Tecnológica; México
Fil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Usta Baykal, Nurbahar. Hacettepe University; Turquía
Fil: Valiente Banuet, Alfonso. Universidad Nacional Autónoma de México; México
Fil: Vargas Colin, Alexa. Instituto Potosino de Investigación Científica y Tecnológica; México
Fil: Vogiatzakis, Ioannis. Open University of Cyprus; Chipre. University of Bari Aldo Moro; Italia
Fil: Zamora, Regino. Universidad de Granada; España
Materia
RECRUITMENT NETWORKS
FACILITATION
PLANT PLANT INTERACTIONS
canopy service
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/276638

id CONICETDig_c0e333031534128fd4df246769cbc0bb
oai_identifier_str oai:ri.conicet.gov.ar:11336/276638
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Key concepts and a world‐wide look at plant recruitment networksAlcántara, Julio M.Verdú, MiguelGarrido, José LuisMontesinos Navarro, AliciaAizen, Marcelo AdrianAlifriqui, MohamedAllen, DavidAl Namazi, Ali A.Armas, CristinaBastida, Jesús M.Bellido, TonoPaterno, Gustavo BrantBriceño, HerbertCamargo de Oliveira, Ricardo A.Campoy, Josefina G.Chaieb, GhassenChu, ChengjinConstantinou, ElenaDelalandre, LéoDuarte, MilenFaife Cabrera, MichelFazlioglu, FatihFernando, Edwino S.Flores, JoelGavini, SabrinaUsta Baykal, NurbaharValiente Banuet, AlfonsoVargas Colin, AlexaVogiatzakis, IoannisZamora, ReginoRECRUITMENT NETWORKSFACILITATIONPLANT PLANT INTERACTIONScanopy servicehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.Fil: Alcántara, Julio M.. Universidad de Jaén; España. Andalusian Interuniversity Institute for Earth System Research; EspañaFil: Verdú, Miguel. Centro de Investigaciones Sobre Desertificación; EspañaFil: Garrido, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Montesinos Navarro, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Alifriqui, Mohamed. Cadi Ayyad University; MarruecosFil: Allen, David. Middlebury College; Estados UnidosFil: Al Namazi, Ali A.. King Abdulaziz City for Science and Technology; Arabia SauditaFil: Armas, Cristina. Consejo Superior de Investigaciones Científicas. Estación Experimental de Zonas Aridas; EspañaFil: Bastida, Jesús M.. Estación Experimental del Zadín; EspañaFil: Bellido, Tono. Vivers Municipals de El Saler; EspañaFil: Paterno, Gustavo Brant. Georg-August-Universität Göttingen; AlemaniaFil: Briceño, Herbert. Universidad Central de Venezuela; VenezuelaFil: Camargo de Oliveira, Ricardo A.. Universidade Federal do Paraná; BrasilFil: Campoy, Josefina G.. Universidad de Santiago de Compostela; EspañaFil: Chaieb, Ghassen. University of Bordeaux; FranciaFil: Chu, Chengjin. Sun Yat-sen Universit; ChinaFil: Constantinou, Elena. Open University of Cyprus; ChipreFil: Delalandre, Léo. Centre d'écologie fonctionnelle et évolutive; FranciaFil: Duarte, Milen. Universidad Austral de Chile; ChileFil: Faife Cabrera, Michel. Universidad Austral de Chile; ChileFil: Fazlioglu, Fatih. Ordu University; TurquíaFil: Fernando, Edwino S.. University of the Philippines; FilipinasFil: Flores, Joel. Instituto Potosino de Investigación Científica y Tecnológica; MéxicoFil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Usta Baykal, Nurbahar. Hacettepe University; TurquíaFil: Valiente Banuet, Alfonso. Universidad Nacional Autónoma de México; MéxicoFil: Vargas Colin, Alexa. Instituto Potosino de Investigación Científica y Tecnológica; MéxicoFil: Vogiatzakis, Ioannis. Open University of Cyprus; Chipre. University of Bari Aldo Moro; ItaliaFil: Zamora, Regino. Universidad de Granada; EspañaWiley Blackwell Publishing, Inc2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276638Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; et al.; Key concepts and a world‐wide look at plant recruitment networks; Wiley Blackwell Publishing, Inc; Biological Reviews; 100; 3; 12-2024; 1127-11511464-7931CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/brv.13177info:eu-repo/semantics/altIdentifier/doi/10.1111/brv.13177info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:55:24Zoai:ri.conicet.gov.ar:11336/276638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:55:24.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Key concepts and a world‐wide look at plant recruitment networks
title Key concepts and a world‐wide look at plant recruitment networks
spellingShingle Key concepts and a world‐wide look at plant recruitment networks
Alcántara, Julio M.
RECRUITMENT NETWORKS
FACILITATION
PLANT PLANT INTERACTIONS
canopy service
title_short Key concepts and a world‐wide look at plant recruitment networks
title_full Key concepts and a world‐wide look at plant recruitment networks
title_fullStr Key concepts and a world‐wide look at plant recruitment networks
title_full_unstemmed Key concepts and a world‐wide look at plant recruitment networks
title_sort Key concepts and a world‐wide look at plant recruitment networks
dc.creator.none.fl_str_mv Alcántara, Julio M.
Verdú, Miguel
Garrido, José Luis
Montesinos Navarro, Alicia
Aizen, Marcelo Adrian
Alifriqui, Mohamed
Allen, David
Al Namazi, Ali A.
Armas, Cristina
Bastida, Jesús M.
Bellido, Tono
Paterno, Gustavo Brant
Briceño, Herbert
Camargo de Oliveira, Ricardo A.
Campoy, Josefina G.
Chaieb, Ghassen
Chu, Chengjin
Constantinou, Elena
Delalandre, Léo
Duarte, Milen
Faife Cabrera, Michel
Fazlioglu, Fatih
Fernando, Edwino S.
Flores, Joel
Gavini, Sabrina
Usta Baykal, Nurbahar
Valiente Banuet, Alfonso
Vargas Colin, Alexa
Vogiatzakis, Ioannis
Zamora, Regino
author Alcántara, Julio M.
author_facet Alcántara, Julio M.
Verdú, Miguel
Garrido, José Luis
Montesinos Navarro, Alicia
Aizen, Marcelo Adrian
Alifriqui, Mohamed
Allen, David
Al Namazi, Ali A.
Armas, Cristina
Bastida, Jesús M.
Bellido, Tono
Paterno, Gustavo Brant
Briceño, Herbert
Camargo de Oliveira, Ricardo A.
Campoy, Josefina G.
Chaieb, Ghassen
Chu, Chengjin
Constantinou, Elena
Delalandre, Léo
Duarte, Milen
Faife Cabrera, Michel
Fazlioglu, Fatih
Fernando, Edwino S.
Flores, Joel
Gavini, Sabrina
Usta Baykal, Nurbahar
Valiente Banuet, Alfonso
Vargas Colin, Alexa
Vogiatzakis, Ioannis
Zamora, Regino
author_role author
author2 Verdú, Miguel
Garrido, José Luis
Montesinos Navarro, Alicia
Aizen, Marcelo Adrian
Alifriqui, Mohamed
Allen, David
Al Namazi, Ali A.
Armas, Cristina
Bastida, Jesús M.
Bellido, Tono
Paterno, Gustavo Brant
Briceño, Herbert
Camargo de Oliveira, Ricardo A.
Campoy, Josefina G.
Chaieb, Ghassen
Chu, Chengjin
Constantinou, Elena
Delalandre, Léo
Duarte, Milen
Faife Cabrera, Michel
Fazlioglu, Fatih
Fernando, Edwino S.
Flores, Joel
Gavini, Sabrina
Usta Baykal, Nurbahar
Valiente Banuet, Alfonso
Vargas Colin, Alexa
Vogiatzakis, Ioannis
Zamora, Regino
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv RECRUITMENT NETWORKS
FACILITATION
PLANT PLANT INTERACTIONS
canopy service
topic RECRUITMENT NETWORKS
FACILITATION
PLANT PLANT INTERACTIONS
canopy service
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.
Fil: Alcántara, Julio M.. Universidad de Jaén; España. Andalusian Interuniversity Institute for Earth System Research; España
Fil: Verdú, Miguel. Centro de Investigaciones Sobre Desertificación; España
Fil: Garrido, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Montesinos Navarro, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Alifriqui, Mohamed. Cadi Ayyad University; Marruecos
Fil: Allen, David. Middlebury College; Estados Unidos
Fil: Al Namazi, Ali A.. King Abdulaziz City for Science and Technology; Arabia Saudita
Fil: Armas, Cristina. Consejo Superior de Investigaciones Científicas. Estación Experimental de Zonas Aridas; España
Fil: Bastida, Jesús M.. Estación Experimental del Zadín; España
Fil: Bellido, Tono. Vivers Municipals de El Saler; España
Fil: Paterno, Gustavo Brant. Georg-August-Universität Göttingen; Alemania
Fil: Briceño, Herbert. Universidad Central de Venezuela; Venezuela
Fil: Camargo de Oliveira, Ricardo A.. Universidade Federal do Paraná; Brasil
Fil: Campoy, Josefina G.. Universidad de Santiago de Compostela; España
Fil: Chaieb, Ghassen. University of Bordeaux; Francia
Fil: Chu, Chengjin. Sun Yat-sen Universit; China
Fil: Constantinou, Elena. Open University of Cyprus; Chipre
Fil: Delalandre, Léo. Centre d'écologie fonctionnelle et évolutive; Francia
Fil: Duarte, Milen. Universidad Austral de Chile; Chile
Fil: Faife Cabrera, Michel. Universidad Austral de Chile; Chile
Fil: Fazlioglu, Fatih. Ordu University; Turquía
Fil: Fernando, Edwino S.. University of the Philippines; Filipinas
Fil: Flores, Joel. Instituto Potosino de Investigación Científica y Tecnológica; México
Fil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Usta Baykal, Nurbahar. Hacettepe University; Turquía
Fil: Valiente Banuet, Alfonso. Universidad Nacional Autónoma de México; México
Fil: Vargas Colin, Alexa. Instituto Potosino de Investigación Científica y Tecnológica; México
Fil: Vogiatzakis, Ioannis. Open University of Cyprus; Chipre. University of Bari Aldo Moro; Italia
Fil: Zamora, Regino. Universidad de Granada; España
description Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.
publishDate 2024
dc.date.none.fl_str_mv 2024-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/276638
Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; et al.; Key concepts and a world‐wide look at plant recruitment networks; Wiley Blackwell Publishing, Inc; Biological Reviews; 100; 3; 12-2024; 1127-1151
1464-7931
CONICET Digital
CONICET
url http://hdl.handle.net/11336/276638
identifier_str_mv Alcántara, Julio M.; Verdú, Miguel; Garrido, José Luis; Montesinos Navarro, Alicia; Aizen, Marcelo Adrian; et al.; Key concepts and a world‐wide look at plant recruitment networks; Wiley Blackwell Publishing, Inc; Biological Reviews; 100; 3; 12-2024; 1127-1151
1464-7931
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/brv.13177
info:eu-repo/semantics/altIdentifier/doi/10.1111/brv.13177
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335451792211968
score 12.952241