A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes

Autores
Cipriotti, Pablo Ariel; Aguiar, Martin Roberto; Wiegand, Thorsten; Paruelo, José
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
1. The coexistence of shrubs and grasses has intrigued ecologists for the past century, and the conundrum of shrub-grass coexistence is at the core of debates on the functioning of semi-arid ecosystems. Here, we explored how the interplay of root competition and facilitation between life-forms at different life stages and demographic bottlenecks controls the long-term coexistence of multiple shrub and grass species in semi-arid Patagonian steppes. 2. We used the spatially explicit and individual-based simulation model DINVEG that integrates the abundant information on the semi-arid Patagonian grass-shrub steppes to test six competing hypotheses on the mechanisms that govern the coexistence and relative abundances of several grass and shrub species. The structurally realistic model allows for a direct comparison of model outputs with a wide range of previously collected field data. 3. We formulate three competing hypotheses on vertical root overlap between grasses and shrubs (no overlap, partial overlap, full overlap) that were crosses with two hypotheses on asymmetric shrub-grass facilitation (with and without). Each of the six variants of DINVEG were tested in their ability to generate dynamics in accordance with detailed field data, and we performed global sensitivity analyses to reveal demographic bottlenecks and controls. 4. The hypothesis combining partial vertical root overlap with no facilitation was the most likely hypothesis given the data. It created demographic bottlenecks in recruitment and emergence that controlled grass and shrub abundances, respectively, and only this hypothesis generated a situation where grasses controlled shrub abundances (by limiting shrub recruitment), but where grass abundance was only weakly controlled by shrubs. Internal water dynamics generated reduced competition of shrubs to neighboured grasses that was sufficient to produce the observed ring of grasses around shrubs, and most of the parameterizations that approximated the observed species-specific abundances were able to reproduce the observed equilibrated spatial patterns of the mature community. 5. Synthesis. We found a complex network of mechanisms that controlled growth-form coexistence and relative abundances in the Patagonian grass-shrub steppe where both, demographic bottlenecks and species interactions across life-forms, species and life stages were important. Our study points to alternative mechanisms of shrub-grass coexistence that may play an important role in dry grasslands and steppes where fire and herbivory are not key drivers and provide an avenue to detect them.
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Recursos Naturales y Ambiente. Catedra de Ecologia; Argentina
Fil: Wiegand, Thorsten. UFZ Helmholtz Centre for Environmental Research. Department of Ecological Modelling; Alemania
Fil: Paruelo, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
Materia
Arid Ecosystems
Biotic Interactions
Competition
Facilitation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4246

id CONICETDig_74928c379ff775a10685136ecedc9b56
oai_identifier_str oai:ri.conicet.gov.ar:11336/4246
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppesCipriotti, Pablo ArielAguiar, Martin RobertoWiegand, ThorstenParuelo, JoséArid EcosystemsBiotic InteractionsCompetitionFacilitationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/11. The coexistence of shrubs and grasses has intrigued ecologists for the past century, and the conundrum of shrub-grass coexistence is at the core of debates on the functioning of semi-arid ecosystems. Here, we explored how the interplay of root competition and facilitation between life-forms at different life stages and demographic bottlenecks controls the long-term coexistence of multiple shrub and grass species in semi-arid Patagonian steppes. 2. We used the spatially explicit and individual-based simulation model DINVEG that integrates the abundant information on the semi-arid Patagonian grass-shrub steppes to test six competing hypotheses on the mechanisms that govern the coexistence and relative abundances of several grass and shrub species. The structurally realistic model allows for a direct comparison of model outputs with a wide range of previously collected field data. 3. We formulate three competing hypotheses on vertical root overlap between grasses and shrubs (no overlap, partial overlap, full overlap) that were crosses with two hypotheses on asymmetric shrub-grass facilitation (with and without). Each of the six variants of DINVEG were tested in their ability to generate dynamics in accordance with detailed field data, and we performed global sensitivity analyses to reveal demographic bottlenecks and controls. 4. The hypothesis combining partial vertical root overlap with no facilitation was the most likely hypothesis given the data. It created demographic bottlenecks in recruitment and emergence that controlled grass and shrub abundances, respectively, and only this hypothesis generated a situation where grasses controlled shrub abundances (by limiting shrub recruitment), but where grass abundance was only weakly controlled by shrubs. Internal water dynamics generated reduced competition of shrubs to neighboured grasses that was sufficient to produce the observed ring of grasses around shrubs, and most of the parameterizations that approximated the observed species-specific abundances were able to reproduce the observed equilibrated spatial patterns of the mature community. 5. Synthesis. We found a complex network of mechanisms that controlled growth-form coexistence and relative abundances in the Patagonian grass-shrub steppe where both, demographic bottlenecks and species interactions across life-forms, species and life stages were important. Our study points to alternative mechanisms of shrub-grass coexistence that may play an important role in dry grasslands and steppes where fire and herbivory are not key drivers and provide an avenue to detect them.Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Recursos Naturales y Ambiente. Catedra de Ecologia; ArgentinaFil: Wiegand, Thorsten. UFZ Helmholtz Centre for Environmental Research. Department of Ecological Modelling; AlemaniaFil: Paruelo, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaWiley2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4246Cipriotti, Pablo Ariel; Aguiar, Martin Roberto; Wiegand, Thorsten; Paruelo, José; A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes; Wiley; Journal of Ecology; 102; 3; 2-2014; 776-7880022-0477enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12246/abstractinfo:eu-repo/semantics/altIdentifier/doi/DOI:10.1111/1365-2745.12246info:eu-repo/semantics/altIdentifier/issn/0022-0477info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:07Zoai:ri.conicet.gov.ar:11336/4246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:08.258CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
title A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
spellingShingle A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
Cipriotti, Pablo Ariel
Arid Ecosystems
Biotic Interactions
Competition
Facilitation
title_short A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
title_full A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
title_fullStr A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
title_full_unstemmed A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
title_sort A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes
dc.creator.none.fl_str_mv Cipriotti, Pablo Ariel
Aguiar, Martin Roberto
Wiegand, Thorsten
Paruelo, José
author Cipriotti, Pablo Ariel
author_facet Cipriotti, Pablo Ariel
Aguiar, Martin Roberto
Wiegand, Thorsten
Paruelo, José
author_role author
author2 Aguiar, Martin Roberto
Wiegand, Thorsten
Paruelo, José
author2_role author
author
author
dc.subject.none.fl_str_mv Arid Ecosystems
Biotic Interactions
Competition
Facilitation
topic Arid Ecosystems
Biotic Interactions
Competition
Facilitation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv 1. The coexistence of shrubs and grasses has intrigued ecologists for the past century, and the conundrum of shrub-grass coexistence is at the core of debates on the functioning of semi-arid ecosystems. Here, we explored how the interplay of root competition and facilitation between life-forms at different life stages and demographic bottlenecks controls the long-term coexistence of multiple shrub and grass species in semi-arid Patagonian steppes. 2. We used the spatially explicit and individual-based simulation model DINVEG that integrates the abundant information on the semi-arid Patagonian grass-shrub steppes to test six competing hypotheses on the mechanisms that govern the coexistence and relative abundances of several grass and shrub species. The structurally realistic model allows for a direct comparison of model outputs with a wide range of previously collected field data. 3. We formulate three competing hypotheses on vertical root overlap between grasses and shrubs (no overlap, partial overlap, full overlap) that were crosses with two hypotheses on asymmetric shrub-grass facilitation (with and without). Each of the six variants of DINVEG were tested in their ability to generate dynamics in accordance with detailed field data, and we performed global sensitivity analyses to reveal demographic bottlenecks and controls. 4. The hypothesis combining partial vertical root overlap with no facilitation was the most likely hypothesis given the data. It created demographic bottlenecks in recruitment and emergence that controlled grass and shrub abundances, respectively, and only this hypothesis generated a situation where grasses controlled shrub abundances (by limiting shrub recruitment), but where grass abundance was only weakly controlled by shrubs. Internal water dynamics generated reduced competition of shrubs to neighboured grasses that was sufficient to produce the observed ring of grasses around shrubs, and most of the parameterizations that approximated the observed species-specific abundances were able to reproduce the observed equilibrated spatial patterns of the mature community. 5. Synthesis. We found a complex network of mechanisms that controlled growth-form coexistence and relative abundances in the Patagonian grass-shrub steppe where both, demographic bottlenecks and species interactions across life-forms, species and life stages were important. Our study points to alternative mechanisms of shrub-grass coexistence that may play an important role in dry grasslands and steppes where fire and herbivory are not key drivers and provide an avenue to detect them.
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Recursos Naturales y Ambiente. Catedra de Ecologia; Argentina
Fil: Wiegand, Thorsten. UFZ Helmholtz Centre for Environmental Research. Department of Ecological Modelling; Alemania
Fil: Paruelo, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
description 1. The coexistence of shrubs and grasses has intrigued ecologists for the past century, and the conundrum of shrub-grass coexistence is at the core of debates on the functioning of semi-arid ecosystems. Here, we explored how the interplay of root competition and facilitation between life-forms at different life stages and demographic bottlenecks controls the long-term coexistence of multiple shrub and grass species in semi-arid Patagonian steppes. 2. We used the spatially explicit and individual-based simulation model DINVEG that integrates the abundant information on the semi-arid Patagonian grass-shrub steppes to test six competing hypotheses on the mechanisms that govern the coexistence and relative abundances of several grass and shrub species. The structurally realistic model allows for a direct comparison of model outputs with a wide range of previously collected field data. 3. We formulate three competing hypotheses on vertical root overlap between grasses and shrubs (no overlap, partial overlap, full overlap) that were crosses with two hypotheses on asymmetric shrub-grass facilitation (with and without). Each of the six variants of DINVEG were tested in their ability to generate dynamics in accordance with detailed field data, and we performed global sensitivity analyses to reveal demographic bottlenecks and controls. 4. The hypothesis combining partial vertical root overlap with no facilitation was the most likely hypothesis given the data. It created demographic bottlenecks in recruitment and emergence that controlled grass and shrub abundances, respectively, and only this hypothesis generated a situation where grasses controlled shrub abundances (by limiting shrub recruitment), but where grass abundance was only weakly controlled by shrubs. Internal water dynamics generated reduced competition of shrubs to neighboured grasses that was sufficient to produce the observed ring of grasses around shrubs, and most of the parameterizations that approximated the observed species-specific abundances were able to reproduce the observed equilibrated spatial patterns of the mature community. 5. Synthesis. We found a complex network of mechanisms that controlled growth-form coexistence and relative abundances in the Patagonian grass-shrub steppe where both, demographic bottlenecks and species interactions across life-forms, species and life stages were important. Our study points to alternative mechanisms of shrub-grass coexistence that may play an important role in dry grasslands and steppes where fire and herbivory are not key drivers and provide an avenue to detect them.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4246
Cipriotti, Pablo Ariel; Aguiar, Martin Roberto; Wiegand, Thorsten; Paruelo, José; A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes; Wiley; Journal of Ecology; 102; 3; 2-2014; 776-788
0022-0477
url http://hdl.handle.net/11336/4246
identifier_str_mv Cipriotti, Pablo Ariel; Aguiar, Martin Roberto; Wiegand, Thorsten; Paruelo, José; A complex interaction networks controls coexistence and relative abundances in grass-shrub Patagonian steppes; Wiley; Journal of Ecology; 102; 3; 2-2014; 776-788
0022-0477
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12246/abstract
info:eu-repo/semantics/altIdentifier/doi/DOI:10.1111/1365-2745.12246
info:eu-repo/semantics/altIdentifier/issn/0022-0477
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613388975472640
score 13.070432