Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation

Autores
Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere.
Fil: Anders, Christian. Technische Universität Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Urbassek, Herbert M.. Technische Universität Kaiserslautern; Alemania
Materia
MOLECULAR DYNAMICS
GLYCINE
SPUTTERING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/144566

id CONICETDig_c03c84104497a80f5cfa92bb47c07555
oai_identifier_str oai:ri.conicet.gov.ar:11336/144566
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion IrradiationAnders, ChristianBringa, Eduardo MarcialUrbassek, Herbert M.MOLECULAR DYNAMICSGLYCINESPUTTERINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere.Fil: Anders, Christian. Technische Universität Kaiserslautern; AlemaniaFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Urbassek, Herbert M.. Technische Universität Kaiserslautern; AlemaniaIOP Publishing2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144566Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation; IOP Publishing; Astrophysical Journal; 891; 1; 3-2020; 1-90004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab6efe/metainfo:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab6efeinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:10Zoai:ri.conicet.gov.ar:11336/144566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:11.166CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
title Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
spellingShingle Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
Anders, Christian
MOLECULAR DYNAMICS
GLYCINE
SPUTTERING
title_short Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
title_full Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
title_fullStr Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
title_full_unstemmed Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
title_sort Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
dc.creator.none.fl_str_mv Anders, Christian
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author Anders, Christian
author_facet Anders, Christian
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author_role author
author2 Bringa, Eduardo Marcial
Urbassek, Herbert M.
author2_role author
author
dc.subject.none.fl_str_mv MOLECULAR DYNAMICS
GLYCINE
SPUTTERING
topic MOLECULAR DYNAMICS
GLYCINE
SPUTTERING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere.
Fil: Anders, Christian. Technische Universität Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Urbassek, Herbert M.. Technische Universität Kaiserslautern; Alemania
description Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/144566
Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation; IOP Publishing; Astrophysical Journal; 891; 1; 3-2020; 1-9
0004-637X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/144566
identifier_str_mv Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation; IOP Publishing; Astrophysical Journal; 891; 1; 3-2020; 1-9
0004-637X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab6efe/meta
info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab6efe
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614026688987136
score 13.070432