Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation
- Autores
- Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere.
Fil: Anders, Christian. Technische Universität Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Urbassek, Herbert M.. Technische Universität Kaiserslautern; Alemania - Materia
-
MOLECULAR DYNAMICS
GLYCINE
SPUTTERING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/144566
Ver los metadatos del registro completo
id |
CONICETDig_c03c84104497a80f5cfa92bb47c07555 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/144566 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion IrradiationAnders, ChristianBringa, Eduardo MarcialUrbassek, Herbert M.MOLECULAR DYNAMICSGLYCINESPUTTERINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere.Fil: Anders, Christian. Technische Universität Kaiserslautern; AlemaniaFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Urbassek, Herbert M.. Technische Universität Kaiserslautern; AlemaniaIOP Publishing2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144566Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation; IOP Publishing; Astrophysical Journal; 891; 1; 3-2020; 1-90004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab6efe/metainfo:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab6efeinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:10Zoai:ri.conicet.gov.ar:11336/144566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:11.166CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation |
title |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation |
spellingShingle |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation Anders, Christian MOLECULAR DYNAMICS GLYCINE SPUTTERING |
title_short |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation |
title_full |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation |
title_fullStr |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation |
title_full_unstemmed |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation |
title_sort |
Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation |
dc.creator.none.fl_str_mv |
Anders, Christian Bringa, Eduardo Marcial Urbassek, Herbert M. |
author |
Anders, Christian |
author_facet |
Anders, Christian Bringa, Eduardo Marcial Urbassek, Herbert M. |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Urbassek, Herbert M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MOLECULAR DYNAMICS GLYCINE SPUTTERING |
topic |
MOLECULAR DYNAMICS GLYCINE SPUTTERING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere. Fil: Anders, Christian. Technische Universität Kaiserslautern; Alemania Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Urbassek, Herbert M.. Technische Universität Kaiserslautern; Alemania |
description |
Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/144566 Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation; IOP Publishing; Astrophysical Journal; 891; 1; 3-2020; 1-9 0004-637X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/144566 |
identifier_str_mv |
Anders, Christian; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation; IOP Publishing; Astrophysical Journal; 891; 1; 3-2020; 1-9 0004-637X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab6efe/meta info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab6efe |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614026688987136 |
score |
13.070432 |