The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes

Autores
San Martín, Alvaro; Rela, Lorena; Gelb, Bruce; Pagani, Mario Rafael
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila. We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.
Fil: San Martín, Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Fil: Rela, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Fil: Gelb, Bruce. Icahn School of Medicine at Mount Sinai; Estados Unidos
Fil: Pagani, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Materia
SPACED STIMULATION
STIMULUS INTEGRATION AND DECODING
STRUCTURAL SYNAPTIC PLASTICITY
DROSOPHILA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47447

id CONICETDig_c021dee63e4fc120ce0be9031a8dcb58
oai_identifier_str oai:ri.conicet.gov.ar:11336/47447
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic ChangesSan Martín, AlvaroRela, LorenaGelb, BrucePagani, Mario RafaelSPACED STIMULATIONSTIMULUS INTEGRATION AND DECODINGSTRUCTURAL SYNAPTIC PLASTICITYDROSOPHILAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila. We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.Fil: San Martín, Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Rela, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Gelb, Bruce. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Pagani, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaSociety for Neuroscience2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47447San Martín, Alvaro; Rela, Lorena; Gelb, Bruce; Pagani, Mario Rafael; The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes; Society for Neuroscience; Journal of Neuroscience; 37; 19; 5-2017; 4992-50070270-6474CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.2607-16.2017info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/37/19/4992info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:49Zoai:ri.conicet.gov.ar:11336/47447instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:49.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
title The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
spellingShingle The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
San Martín, Alvaro
SPACED STIMULATION
STIMULUS INTEGRATION AND DECODING
STRUCTURAL SYNAPTIC PLASTICITY
DROSOPHILA
title_short The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
title_full The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
title_fullStr The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
title_full_unstemmed The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
title_sort The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes
dc.creator.none.fl_str_mv San Martín, Alvaro
Rela, Lorena
Gelb, Bruce
Pagani, Mario Rafael
author San Martín, Alvaro
author_facet San Martín, Alvaro
Rela, Lorena
Gelb, Bruce
Pagani, Mario Rafael
author_role author
author2 Rela, Lorena
Gelb, Bruce
Pagani, Mario Rafael
author2_role author
author
author
dc.subject.none.fl_str_mv SPACED STIMULATION
STIMULUS INTEGRATION AND DECODING
STRUCTURAL SYNAPTIC PLASTICITY
DROSOPHILA
topic SPACED STIMULATION
STIMULUS INTEGRATION AND DECODING
STRUCTURAL SYNAPTIC PLASTICITY
DROSOPHILA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila. We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.
Fil: San Martín, Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Fil: Rela, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Fil: Gelb, Bruce. Icahn School of Medicine at Mount Sinai; Estados Unidos
Fil: Pagani, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
description In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila. We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.
publishDate 2017
dc.date.none.fl_str_mv 2017-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47447
San Martín, Alvaro; Rela, Lorena; Gelb, Bruce; Pagani, Mario Rafael; The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes; Society for Neuroscience; Journal of Neuroscience; 37; 19; 5-2017; 4992-5007
0270-6474
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47447
identifier_str_mv San Martín, Alvaro; Rela, Lorena; Gelb, Bruce; Pagani, Mario Rafael; The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes; Society for Neuroscience; Journal of Neuroscience; 37; 19; 5-2017; 4992-5007
0270-6474
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.2607-16.2017
info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/37/19/4992
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Neuroscience
publisher.none.fl_str_mv Society for Neuroscience
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781830455361536
score 12.928904