Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity
- Autores
- Pinoni, Silvina Andrea; Lopez Mañanes, Alejandra Antonia
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The occurrence and characteristics of ouabain-insensitive Na+ ATPase activity and the response to environmental salinity of the coexistent Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities were studied in chela muscle of the euryhaline crab Neohelice (Chasmagnathus) granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited two ouabain-insensitive Na+ ATPase activities (a furosemide-insensitive and a furosemide-sensitive activity). I50 for ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was about 1.4 mM. Both ouabain-insensitive, furosemide-insensitive and furosemide-sensitive Na+ ATPase activities were weakly affected by pH and showed Michaelis-Menten kinetics (Km = 0.021 and 0.224 mM, respectively). These characteristics appeared to be quite different from those previously described for Na+-K+ ATPase activity in chela muscle of this crab. Na+-K+ ATPase and ouabain-insensitive, furosemide-sensitive Na+ ATPase activities appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰), a salinity at which N. granulata exhibits a strong hyperregulatory capacity, Na+-K+ ATPase activity was higher (117 ± 26 nmol Pi min- 1 mg prot- 1) than in 35‰ salinity (23 ± 6 nmol Pi min- 1 mg prot- 1) (a salinity at which this crab is osmoionoconforming). On the contrary, ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was higher in 35‰ salinity (108 ±15 nmol Pi min- 1 mg prot- 1) than in crabs acclimated to 10‰ salinity (36 ± 11 nmol Pi min- 1 mg prot- 1). Ouabain-insensitive, furosemide-insensitive Na+ ATPase activity was not affected by acclimation of crabs to low salinity. The response to low salinity suggests that Na+-K+ ATPase could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation whereas ouabain-insensitive, furosemide-sensitive activity appeared to be predominant upon osmoconforming conditions. The possible differential functional roles of Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities in muscle are discussed.
Fil: Pinoni, Silvina Andrea. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Fil: Lopez Mañanes, Alejandra Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; Argentina - Materia
-
CRABS
MUSCLE
NA+ ATPASES
NEOHELICE GRANULATA
OSMOIONOREGULATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/160062
Ver los metadatos del registro completo
id |
CONICETDig_bf9f410351bda52b1e9033843df93ef8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/160062 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinityPinoni, Silvina AndreaLopez Mañanes, Alejandra AntoniaCRABSMUSCLENA+ ATPASESNEOHELICE GRANULATAOSMOIONOREGULATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The occurrence and characteristics of ouabain-insensitive Na+ ATPase activity and the response to environmental salinity of the coexistent Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities were studied in chela muscle of the euryhaline crab Neohelice (Chasmagnathus) granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited two ouabain-insensitive Na+ ATPase activities (a furosemide-insensitive and a furosemide-sensitive activity). I50 for ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was about 1.4 mM. Both ouabain-insensitive, furosemide-insensitive and furosemide-sensitive Na+ ATPase activities were weakly affected by pH and showed Michaelis-Menten kinetics (Km = 0.021 and 0.224 mM, respectively). These characteristics appeared to be quite different from those previously described for Na+-K+ ATPase activity in chela muscle of this crab. Na+-K+ ATPase and ouabain-insensitive, furosemide-sensitive Na+ ATPase activities appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰), a salinity at which N. granulata exhibits a strong hyperregulatory capacity, Na+-K+ ATPase activity was higher (117 ± 26 nmol Pi min- 1 mg prot- 1) than in 35‰ salinity (23 ± 6 nmol Pi min- 1 mg prot- 1) (a salinity at which this crab is osmoionoconforming). On the contrary, ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was higher in 35‰ salinity (108 ±15 nmol Pi min- 1 mg prot- 1) than in crabs acclimated to 10‰ salinity (36 ± 11 nmol Pi min- 1 mg prot- 1). Ouabain-insensitive, furosemide-insensitive Na+ ATPase activity was not affected by acclimation of crabs to low salinity. The response to low salinity suggests that Na+-K+ ATPase could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation whereas ouabain-insensitive, furosemide-sensitive activity appeared to be predominant upon osmoconforming conditions. The possible differential functional roles of Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities in muscle are discussed.Fil: Pinoni, Silvina Andrea. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Lopez Mañanes, Alejandra Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; ArgentinaElsevier Science2009-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160062Pinoni, Silvina Andrea; Lopez Mañanes, Alejandra Antonia; Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 372; 1-2; 4-2009; 91-970022-0981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022098109000914info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jembe.2009.02.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:38Zoai:ri.conicet.gov.ar:11336/160062instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:39.171CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity |
title |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity |
spellingShingle |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity Pinoni, Silvina Andrea CRABS MUSCLE NA+ ATPASES NEOHELICE GRANULATA OSMOIONOREGULATION |
title_short |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity |
title_full |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity |
title_fullStr |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity |
title_full_unstemmed |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity |
title_sort |
Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity |
dc.creator.none.fl_str_mv |
Pinoni, Silvina Andrea Lopez Mañanes, Alejandra Antonia |
author |
Pinoni, Silvina Andrea |
author_facet |
Pinoni, Silvina Andrea Lopez Mañanes, Alejandra Antonia |
author_role |
author |
author2 |
Lopez Mañanes, Alejandra Antonia |
author2_role |
author |
dc.subject.none.fl_str_mv |
CRABS MUSCLE NA+ ATPASES NEOHELICE GRANULATA OSMOIONOREGULATION |
topic |
CRABS MUSCLE NA+ ATPASES NEOHELICE GRANULATA OSMOIONOREGULATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The occurrence and characteristics of ouabain-insensitive Na+ ATPase activity and the response to environmental salinity of the coexistent Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities were studied in chela muscle of the euryhaline crab Neohelice (Chasmagnathus) granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited two ouabain-insensitive Na+ ATPase activities (a furosemide-insensitive and a furosemide-sensitive activity). I50 for ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was about 1.4 mM. Both ouabain-insensitive, furosemide-insensitive and furosemide-sensitive Na+ ATPase activities were weakly affected by pH and showed Michaelis-Menten kinetics (Km = 0.021 and 0.224 mM, respectively). These characteristics appeared to be quite different from those previously described for Na+-K+ ATPase activity in chela muscle of this crab. Na+-K+ ATPase and ouabain-insensitive, furosemide-sensitive Na+ ATPase activities appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰), a salinity at which N. granulata exhibits a strong hyperregulatory capacity, Na+-K+ ATPase activity was higher (117 ± 26 nmol Pi min- 1 mg prot- 1) than in 35‰ salinity (23 ± 6 nmol Pi min- 1 mg prot- 1) (a salinity at which this crab is osmoionoconforming). On the contrary, ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was higher in 35‰ salinity (108 ±15 nmol Pi min- 1 mg prot- 1) than in crabs acclimated to 10‰ salinity (36 ± 11 nmol Pi min- 1 mg prot- 1). Ouabain-insensitive, furosemide-insensitive Na+ ATPase activity was not affected by acclimation of crabs to low salinity. The response to low salinity suggests that Na+-K+ ATPase could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation whereas ouabain-insensitive, furosemide-sensitive activity appeared to be predominant upon osmoconforming conditions. The possible differential functional roles of Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities in muscle are discussed. Fil: Pinoni, Silvina Andrea. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina Fil: Lopez Mañanes, Alejandra Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; Argentina |
description |
The occurrence and characteristics of ouabain-insensitive Na+ ATPase activity and the response to environmental salinity of the coexistent Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities were studied in chela muscle of the euryhaline crab Neohelice (Chasmagnathus) granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited two ouabain-insensitive Na+ ATPase activities (a furosemide-insensitive and a furosemide-sensitive activity). I50 for ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was about 1.4 mM. Both ouabain-insensitive, furosemide-insensitive and furosemide-sensitive Na+ ATPase activities were weakly affected by pH and showed Michaelis-Menten kinetics (Km = 0.021 and 0.224 mM, respectively). These characteristics appeared to be quite different from those previously described for Na+-K+ ATPase activity in chela muscle of this crab. Na+-K+ ATPase and ouabain-insensitive, furosemide-sensitive Na+ ATPase activities appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰), a salinity at which N. granulata exhibits a strong hyperregulatory capacity, Na+-K+ ATPase activity was higher (117 ± 26 nmol Pi min- 1 mg prot- 1) than in 35‰ salinity (23 ± 6 nmol Pi min- 1 mg prot- 1) (a salinity at which this crab is osmoionoconforming). On the contrary, ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was higher in 35‰ salinity (108 ±15 nmol Pi min- 1 mg prot- 1) than in crabs acclimated to 10‰ salinity (36 ± 11 nmol Pi min- 1 mg prot- 1). Ouabain-insensitive, furosemide-insensitive Na+ ATPase activity was not affected by acclimation of crabs to low salinity. The response to low salinity suggests that Na+-K+ ATPase could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation whereas ouabain-insensitive, furosemide-sensitive activity appeared to be predominant upon osmoconforming conditions. The possible differential functional roles of Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities in muscle are discussed. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/160062 Pinoni, Silvina Andrea; Lopez Mañanes, Alejandra Antonia; Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 372; 1-2; 4-2009; 91-97 0022-0981 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/160062 |
identifier_str_mv |
Pinoni, Silvina Andrea; Lopez Mañanes, Alejandra Antonia; Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 372; 1-2; 4-2009; 91-97 0022-0981 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022098109000914 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jembe.2009.02.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269173128888320 |
score |
13.13397 |