Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
- Autores
- Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; Park, Nigel; Teslich, Nick E.; Urbassek, Herbert M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.
Fil: Anders, Christian. Universitat Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Ziegenhain, Gerolf. Universitat Kaiserslautern; Alemania
Fil: Graham, Giles A.. Natural History Museum; Reino Unido
Fil: Hansen, J. Freddy. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Park, Nigel. No especifíca;
Fil: Teslich, Nick E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Urbassek, Herbert M.. Universitat Kaiserslautern; Alemania - Materia
-
craters
molecular dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/199500
Ver los metadatos del registro completo
id |
CONICETDig_bf491658003ea851598724f06d71a64e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/199500 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flowAnders, ChristianBringa, Eduardo MarcialZiegenhain, GerolfGraham, Giles A.Hansen, J. FreddyPark, NigelTeslich, Nick E.Urbassek, Herbert M.cratersmolecular dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.Fil: Anders, Christian. Universitat Kaiserslautern; AlemaniaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Ziegenhain, Gerolf. Universitat Kaiserslautern; AlemaniaFil: Graham, Giles A.. Natural History Museum; Reino UnidoFil: Hansen, J. Freddy. Lawrence Livermore National Laboratory; Estados UnidosFil: Park, Nigel. No especifíca;Fil: Teslich, Nick E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Urbassek, Herbert M.. Universitat Kaiserslautern; AlemaniaAmerican Physical Society2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199500Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; et al.; Why nanoprojectiles work differently than macroimpactors: The role of plastic flow; American Physical Society; Physical Review Letters; 108; 2; 1-2012; 27601-276050031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.027601info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.108.027601info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:18Zoai:ri.conicet.gov.ar:11336/199500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:19.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow |
title |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow |
spellingShingle |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow Anders, Christian craters molecular dynamics |
title_short |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow |
title_full |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow |
title_fullStr |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow |
title_full_unstemmed |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow |
title_sort |
Why nanoprojectiles work differently than macroimpactors: The role of plastic flow |
dc.creator.none.fl_str_mv |
Anders, Christian Bringa, Eduardo Marcial Ziegenhain, Gerolf Graham, Giles A. Hansen, J. Freddy Park, Nigel Teslich, Nick E. Urbassek, Herbert M. |
author |
Anders, Christian |
author_facet |
Anders, Christian Bringa, Eduardo Marcial Ziegenhain, Gerolf Graham, Giles A. Hansen, J. Freddy Park, Nigel Teslich, Nick E. Urbassek, Herbert M. |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Ziegenhain, Gerolf Graham, Giles A. Hansen, J. Freddy Park, Nigel Teslich, Nick E. Urbassek, Herbert M. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
craters molecular dynamics |
topic |
craters molecular dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed. Fil: Anders, Christian. Universitat Kaiserslautern; Alemania Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Ziegenhain, Gerolf. Universitat Kaiserslautern; Alemania Fil: Graham, Giles A.. Natural History Museum; Reino Unido Fil: Hansen, J. Freddy. Lawrence Livermore National Laboratory; Estados Unidos Fil: Park, Nigel. No especifíca; Fil: Teslich, Nick E.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Urbassek, Herbert M.. Universitat Kaiserslautern; Alemania |
description |
Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/199500 Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; et al.; Why nanoprojectiles work differently than macroimpactors: The role of plastic flow; American Physical Society; Physical Review Letters; 108; 2; 1-2012; 27601-27605 0031-9007 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/199500 |
identifier_str_mv |
Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; et al.; Why nanoprojectiles work differently than macroimpactors: The role of plastic flow; American Physical Society; Physical Review Letters; 108; 2; 1-2012; 27601-27605 0031-9007 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.027601 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.108.027601 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613394468962304 |
score |
13.070432 |