Why nanoprojectiles work differently than macroimpactors: The role of plastic flow

Autores
Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; Park, Nigel; Teslich, Nick E.; Urbassek, Herbert M.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.
Fil: Anders, Christian. Universitat Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Ziegenhain, Gerolf. Universitat Kaiserslautern; Alemania
Fil: Graham, Giles A.. Natural History Museum; Reino Unido
Fil: Hansen, J. Freddy. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Park, Nigel. No especifíca;
Fil: Teslich, Nick E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Urbassek, Herbert M.. Universitat Kaiserslautern; Alemania
Materia
craters
molecular dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/199500

id CONICETDig_bf491658003ea851598724f06d71a64e
oai_identifier_str oai:ri.conicet.gov.ar:11336/199500
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Why nanoprojectiles work differently than macroimpactors: The role of plastic flowAnders, ChristianBringa, Eduardo MarcialZiegenhain, GerolfGraham, Giles A.Hansen, J. FreddyPark, NigelTeslich, Nick E.Urbassek, Herbert M.cratersmolecular dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.Fil: Anders, Christian. Universitat Kaiserslautern; AlemaniaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Ziegenhain, Gerolf. Universitat Kaiserslautern; AlemaniaFil: Graham, Giles A.. Natural History Museum; Reino UnidoFil: Hansen, J. Freddy. Lawrence Livermore National Laboratory; Estados UnidosFil: Park, Nigel. No especifíca;Fil: Teslich, Nick E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Urbassek, Herbert M.. Universitat Kaiserslautern; AlemaniaAmerican Physical Society2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199500Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; et al.; Why nanoprojectiles work differently than macroimpactors: The role of plastic flow; American Physical Society; Physical Review Letters; 108; 2; 1-2012; 27601-276050031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.027601info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.108.027601info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:18Zoai:ri.conicet.gov.ar:11336/199500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:19.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
title Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
spellingShingle Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
Anders, Christian
craters
molecular dynamics
title_short Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
title_full Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
title_fullStr Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
title_full_unstemmed Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
title_sort Why nanoprojectiles work differently than macroimpactors: The role of plastic flow
dc.creator.none.fl_str_mv Anders, Christian
Bringa, Eduardo Marcial
Ziegenhain, Gerolf
Graham, Giles A.
Hansen, J. Freddy
Park, Nigel
Teslich, Nick E.
Urbassek, Herbert M.
author Anders, Christian
author_facet Anders, Christian
Bringa, Eduardo Marcial
Ziegenhain, Gerolf
Graham, Giles A.
Hansen, J. Freddy
Park, Nigel
Teslich, Nick E.
Urbassek, Herbert M.
author_role author
author2 Bringa, Eduardo Marcial
Ziegenhain, Gerolf
Graham, Giles A.
Hansen, J. Freddy
Park, Nigel
Teslich, Nick E.
Urbassek, Herbert M.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv craters
molecular dynamics
topic craters
molecular dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.
Fil: Anders, Christian. Universitat Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Ziegenhain, Gerolf. Universitat Kaiserslautern; Alemania
Fil: Graham, Giles A.. Natural History Museum; Reino Unido
Fil: Hansen, J. Freddy. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Park, Nigel. No especifíca;
Fil: Teslich, Nick E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Urbassek, Herbert M.. Universitat Kaiserslautern; Alemania
description Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 10^10 atoms are compared to available experimental data on micron-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/199500
Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; et al.; Why nanoprojectiles work differently than macroimpactors: The role of plastic flow; American Physical Society; Physical Review Letters; 108; 2; 1-2012; 27601-27605
0031-9007
CONICET Digital
CONICET
url http://hdl.handle.net/11336/199500
identifier_str_mv Anders, Christian; Bringa, Eduardo Marcial; Ziegenhain, Gerolf; Graham, Giles A.; Hansen, J. Freddy; et al.; Why nanoprojectiles work differently than macroimpactors: The role of plastic flow; American Physical Society; Physical Review Letters; 108; 2; 1-2012; 27601-27605
0031-9007
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.027601
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.108.027601
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613394468962304
score 13.070432