Key features and guidelines for the application of microbial alpha diversity metrics

Autores
Cassol, Ignacio; Ibañez, Mauro; Bustamante, Juan Pablo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Studies of microbial communities vary widely in terms of analysis methods. In this growing field, the wide variety of diversity measures and lack of consistency make it harder to compare different studies. Most existing alpha diversity metrics are inherited from other disciplines and their assumptions are not always directly meaningful or true for microbiome data. Many existing microbiome studies apply one or some alpha diversity metrics with no fundamentals but also an unclear results interpretation. This work focuses on a theoretical, empirical, and comparative analysis of 19 frequently and less-frequently used microbial alpha diversity metrics grouped into 4 proposed categories, including key features of every analyzed metric with their mathematical assumptions, to provide a deeper understanding of the existing metrics and a practical implementation guide for future studies. Key metrics that should be required in microbiome analysis include richness, phylogenetic diversity, entropy, dominance of a few microbes over others, and an estimate of unobserved microbes. Collectively, these metrics contribute to a comprehensive set of analyses characterizing samples, allowing the determination of key aspects that might be otherwise obscured by partial or biased information. These guidelines enable further detailed analysis by each author according to their specific interests and clinical trials. Several practical examples are provided to illustrate how these recommendations improve the quality and depth of information obtained, facilitating better interpretation when working with microbiome data. These guidelines can be applied to both existing and future research studies, enhancing the standardization, consistency, and robustness of the analyses conducted. This approach aims to improve the capture of biological diversity, leading to better interpretations and insights.
Fil: Cassol, Ignacio. Universidad Austral. Facultad de Ingeniería; Argentina
Fil: Ibañez, Mauro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Bustamante, Juan Pablo. Universidad Austral. Facultad de Ingeniería; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
MICROBIOME
MICROBIAL DIVERSITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/263618

id CONICETDig_bf3d797111b4db92aaa8d69ddc872b07
oai_identifier_str oai:ri.conicet.gov.ar:11336/263618
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Key features and guidelines for the application of microbial alpha diversity metricsCassol, IgnacioIbañez, MauroBustamante, Juan PabloMICROBIOMEMICROBIAL DIVERSITYhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Studies of microbial communities vary widely in terms of analysis methods. In this growing field, the wide variety of diversity measures and lack of consistency make it harder to compare different studies. Most existing alpha diversity metrics are inherited from other disciplines and their assumptions are not always directly meaningful or true for microbiome data. Many existing microbiome studies apply one or some alpha diversity metrics with no fundamentals but also an unclear results interpretation. This work focuses on a theoretical, empirical, and comparative analysis of 19 frequently and less-frequently used microbial alpha diversity metrics grouped into 4 proposed categories, including key features of every analyzed metric with their mathematical assumptions, to provide a deeper understanding of the existing metrics and a practical implementation guide for future studies. Key metrics that should be required in microbiome analysis include richness, phylogenetic diversity, entropy, dominance of a few microbes over others, and an estimate of unobserved microbes. Collectively, these metrics contribute to a comprehensive set of analyses characterizing samples, allowing the determination of key aspects that might be otherwise obscured by partial or biased information. These guidelines enable further detailed analysis by each author according to their specific interests and clinical trials. Several practical examples are provided to illustrate how these recommendations improve the quality and depth of information obtained, facilitating better interpretation when working with microbiome data. These guidelines can be applied to both existing and future research studies, enhancing the standardization, consistency, and robustness of the analyses conducted. This approach aims to improve the capture of biological diversity, leading to better interpretations and insights.Fil: Cassol, Ignacio. Universidad Austral. Facultad de Ingeniería; ArgentinaFil: Ibañez, Mauro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Bustamante, Juan Pablo. Universidad Austral. Facultad de Ingeniería; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263618Cassol, Ignacio; Ibañez, Mauro; Bustamante, Juan Pablo; Key features and guidelines for the application of microbial alpha diversity metrics; Springer; Scientific Reports; 15; 1; 1-2025; 1-132045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-77864-yinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-77864-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:52Zoai:ri.conicet.gov.ar:11336/263618instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:52.522CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Key features and guidelines for the application of microbial alpha diversity metrics
title Key features and guidelines for the application of microbial alpha diversity metrics
spellingShingle Key features and guidelines for the application of microbial alpha diversity metrics
Cassol, Ignacio
MICROBIOME
MICROBIAL DIVERSITY
title_short Key features and guidelines for the application of microbial alpha diversity metrics
title_full Key features and guidelines for the application of microbial alpha diversity metrics
title_fullStr Key features and guidelines for the application of microbial alpha diversity metrics
title_full_unstemmed Key features and guidelines for the application of microbial alpha diversity metrics
title_sort Key features and guidelines for the application of microbial alpha diversity metrics
dc.creator.none.fl_str_mv Cassol, Ignacio
Ibañez, Mauro
Bustamante, Juan Pablo
author Cassol, Ignacio
author_facet Cassol, Ignacio
Ibañez, Mauro
Bustamante, Juan Pablo
author_role author
author2 Ibañez, Mauro
Bustamante, Juan Pablo
author2_role author
author
dc.subject.none.fl_str_mv MICROBIOME
MICROBIAL DIVERSITY
topic MICROBIOME
MICROBIAL DIVERSITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Studies of microbial communities vary widely in terms of analysis methods. In this growing field, the wide variety of diversity measures and lack of consistency make it harder to compare different studies. Most existing alpha diversity metrics are inherited from other disciplines and their assumptions are not always directly meaningful or true for microbiome data. Many existing microbiome studies apply one or some alpha diversity metrics with no fundamentals but also an unclear results interpretation. This work focuses on a theoretical, empirical, and comparative analysis of 19 frequently and less-frequently used microbial alpha diversity metrics grouped into 4 proposed categories, including key features of every analyzed metric with their mathematical assumptions, to provide a deeper understanding of the existing metrics and a practical implementation guide for future studies. Key metrics that should be required in microbiome analysis include richness, phylogenetic diversity, entropy, dominance of a few microbes over others, and an estimate of unobserved microbes. Collectively, these metrics contribute to a comprehensive set of analyses characterizing samples, allowing the determination of key aspects that might be otherwise obscured by partial or biased information. These guidelines enable further detailed analysis by each author according to their specific interests and clinical trials. Several practical examples are provided to illustrate how these recommendations improve the quality and depth of information obtained, facilitating better interpretation when working with microbiome data. These guidelines can be applied to both existing and future research studies, enhancing the standardization, consistency, and robustness of the analyses conducted. This approach aims to improve the capture of biological diversity, leading to better interpretations and insights.
Fil: Cassol, Ignacio. Universidad Austral. Facultad de Ingeniería; Argentina
Fil: Ibañez, Mauro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Bustamante, Juan Pablo. Universidad Austral. Facultad de Ingeniería; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Studies of microbial communities vary widely in terms of analysis methods. In this growing field, the wide variety of diversity measures and lack of consistency make it harder to compare different studies. Most existing alpha diversity metrics are inherited from other disciplines and their assumptions are not always directly meaningful or true for microbiome data. Many existing microbiome studies apply one or some alpha diversity metrics with no fundamentals but also an unclear results interpretation. This work focuses on a theoretical, empirical, and comparative analysis of 19 frequently and less-frequently used microbial alpha diversity metrics grouped into 4 proposed categories, including key features of every analyzed metric with their mathematical assumptions, to provide a deeper understanding of the existing metrics and a practical implementation guide for future studies. Key metrics that should be required in microbiome analysis include richness, phylogenetic diversity, entropy, dominance of a few microbes over others, and an estimate of unobserved microbes. Collectively, these metrics contribute to a comprehensive set of analyses characterizing samples, allowing the determination of key aspects that might be otherwise obscured by partial or biased information. These guidelines enable further detailed analysis by each author according to their specific interests and clinical trials. Several practical examples are provided to illustrate how these recommendations improve the quality and depth of information obtained, facilitating better interpretation when working with microbiome data. These guidelines can be applied to both existing and future research studies, enhancing the standardization, consistency, and robustness of the analyses conducted. This approach aims to improve the capture of biological diversity, leading to better interpretations and insights.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/263618
Cassol, Ignacio; Ibañez, Mauro; Bustamante, Juan Pablo; Key features and guidelines for the application of microbial alpha diversity metrics; Springer; Scientific Reports; 15; 1; 1-2025; 1-13
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/263618
identifier_str_mv Cassol, Ignacio; Ibañez, Mauro; Bustamante, Juan Pablo; Key features and guidelines for the application of microbial alpha diversity metrics; Springer; Scientific Reports; 15; 1; 1-2025; 1-13
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-77864-y
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-77864-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613462070657024
score 13.070432