Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante

Autores
Nuñez, Nahuel; Rainieri Andersen, Mariana; Lima Jr., Enio; Troiani, Horacio Esteban; Tobia, Dina; Zysler, Roberto Daniel; Winkler, Elin Lilian
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
En este trabajo se sintetizaron nanopartículas de ferrita de zinc, a partir de las cuales se fabricaron compuestos integrados por nanopartículas embebidas en hidroxiapatita carbonatada (NPsHAP). Tanto las nanopartículas como el compuesto NPsHAP fueron caracterizados morfológica y estructuralmente, determinando un diámetro medio de las nanopartículas de (18 ± 3) nm inmersas en una matriz de hidroxiapatita de tamaño micrométrico. A partir de ciclos M vs. H se determinó que las nanopartículas poseen una magnetización de saturación de (56 ± 2) A.m2 /kg. Se realizaron mediciones de hipertermia magnética dispersando las muestras sintetizadas en medios de diferente viscosidad. Los resultados confirman que las nanopartículas son aptas para producir calentamiento por hipertermia magnética tanto en medios viscosos como no viscosos, indicando que la relajación del momento magnético está dominada por el mecanismo de Néel. Mediante resonancia paramagnética electrónica se estudió la sensibilidad de la hidroxiapatita al ser expuesta a rayos X y además se analizó el efecto del recocido previo a la irradiación en la estabilidad de los defectos generados. El radical 2 − es el principal defecto observado con la presencia de especies secundarias cuya intensidad varía según el tratamiento. El compuesto NPsHAP también presenta defectos paramagnéticos al ser irradiado los cuales provienen de la hidroxiapatita. Estos resultados demuestran la bifuncionalidad del nanocompuesto fabricado, lo cual es promisorio para avanzar en el desarrollo y aplicación de nuevos materiales para terapias oncológicas por hipertermia magnética y como sensores locales de radiación ionizante.
In this study, zinc ferrite nanoparticles were synthesized, from which composites were fabricated by embedding the nanoparticles in carbonate hydroxyapatite (NPsHAP). Both, the nanoparticles and the NPsHAP composite, were morphologically and structurally characterized, revealing an average nanoparticle diameter of (18 ± 3) nm embedded in a micrometric hydroxyapatite matrix. Magnetic hysteresis loops (M vs H) analysis determined that the nanoparticles exhibit a saturation magnetization of (56 ± 2) A.m2 /kg. Magnetic hyperthermia measurements were conducted by dispersing the synthesized samples in media with different viscosities. The results confirm that the nanoparticles are suitable for generating magnetic hyperthermia heating in both viscous and non-viscous media, indicating that magnetic moment relaxation is dominated by the Neel mechanism. Electron paramagnetic resonance (EPR) was employed to study the sensitivity of hydroxyapatite to X-ray exposure, and the effect of annealing prior to irradiation on the stability of the generated defects. The 2 − radical was identified as the primary defect observed, with the presence of secondary species whose intensity varied depending on the treatment. The NPsHAP composite also exhibits paramagnetic defects upon irradiation, originating from the hydroxyapatite component. These findings demonstrate the bifunctionality of the fabricated nanocomposite, which holds promise for advancing the development and application of new materials for oncological hyperthermia therapy and as local sensors for ionizing radiation.
Fil: Nuñez, Nahuel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Rainieri Andersen, Mariana. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Lima Jr., Enio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina
Fil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tobia, Dina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina
Fil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Winkler, Elin Lilian. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Materia
COMPUESTO BIFUNCIONAL
NANOPARTICULAS MAGNETICAS
HIPERTERMIA MAGNETICA
HIDROXIAPATITA
SENSOR DE RADIACION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/228783

id CONICETDig_bf38186a735da4dfcb6c0a2e5798ac0b
oai_identifier_str oai:ri.conicet.gov.ar:11336/228783
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizanteNuñez, NahuelRainieri Andersen, MarianaLima Jr., EnioTroiani, Horacio EstebanTobia, DinaZysler, Roberto DanielWinkler, Elin LilianCOMPUESTO BIFUNCIONALNANOPARTICULAS MAGNETICASHIPERTERMIA MAGNETICAHIDROXIAPATITASENSOR DE RADIACIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1En este trabajo se sintetizaron nanopartículas de ferrita de zinc, a partir de las cuales se fabricaron compuestos integrados por nanopartículas embebidas en hidroxiapatita carbonatada (NPsHAP). Tanto las nanopartículas como el compuesto NPsHAP fueron caracterizados morfológica y estructuralmente, determinando un diámetro medio de las nanopartículas de (18 ± 3) nm inmersas en una matriz de hidroxiapatita de tamaño micrométrico. A partir de ciclos M vs. H se determinó que las nanopartículas poseen una magnetización de saturación de (56 ± 2) A.m2 /kg. Se realizaron mediciones de hipertermia magnética dispersando las muestras sintetizadas en medios de diferente viscosidad. Los resultados confirman que las nanopartículas son aptas para producir calentamiento por hipertermia magnética tanto en medios viscosos como no viscosos, indicando que la relajación del momento magnético está dominada por el mecanismo de Néel. Mediante resonancia paramagnética electrónica se estudió la sensibilidad de la hidroxiapatita al ser expuesta a rayos X y además se analizó el efecto del recocido previo a la irradiación en la estabilidad de los defectos generados. El radical 2 − es el principal defecto observado con la presencia de especies secundarias cuya intensidad varía según el tratamiento. El compuesto NPsHAP también presenta defectos paramagnéticos al ser irradiado los cuales provienen de la hidroxiapatita. Estos resultados demuestran la bifuncionalidad del nanocompuesto fabricado, lo cual es promisorio para avanzar en el desarrollo y aplicación de nuevos materiales para terapias oncológicas por hipertermia magnética y como sensores locales de radiación ionizante.In this study, zinc ferrite nanoparticles were synthesized, from which composites were fabricated by embedding the nanoparticles in carbonate hydroxyapatite (NPsHAP). Both, the nanoparticles and the NPsHAP composite, were morphologically and structurally characterized, revealing an average nanoparticle diameter of (18 ± 3) nm embedded in a micrometric hydroxyapatite matrix. Magnetic hysteresis loops (M vs H) analysis determined that the nanoparticles exhibit a saturation magnetization of (56 ± 2) A.m2 /kg. Magnetic hyperthermia measurements were conducted by dispersing the synthesized samples in media with different viscosities. The results confirm that the nanoparticles are suitable for generating magnetic hyperthermia heating in both viscous and non-viscous media, indicating that magnetic moment relaxation is dominated by the Neel mechanism. Electron paramagnetic resonance (EPR) was employed to study the sensitivity of hydroxyapatite to X-ray exposure, and the effect of annealing prior to irradiation on the stability of the generated defects. The 2 − radical was identified as the primary defect observed, with the presence of secondary species whose intensity varied depending on the treatment. The NPsHAP composite also exhibits paramagnetic defects upon irradiation, originating from the hydroxyapatite component. These findings demonstrate the bifunctionality of the fabricated nanocomposite, which holds promise for advancing the development and application of new materials for oncological hyperthermia therapy and as local sensors for ionizing radiation.Fil: Nuñez, Nahuel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Rainieri Andersen, Mariana. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Lima Jr., Enio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; ArgentinaFil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tobia, Dina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; ArgentinaFil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Winkler, Elin Lilian. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaAsociación Argentina de Materiales2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228783Nuñez, Nahuel; Rainieri Andersen, Mariana; Lima Jr., Enio; Troiani, Horacio Esteban; Tobia, Dina; et al.; Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante; Asociación Argentina de Materiales; Revista SAM; 1; 11-2023; 14-261668-4788CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://materiales-sam.org.ar/sam/ultimo-numero-de-la-revista-sam/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:04Zoai:ri.conicet.gov.ar:11336/228783instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:05.172CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
title Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
spellingShingle Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
Nuñez, Nahuel
COMPUESTO BIFUNCIONAL
NANOPARTICULAS MAGNETICAS
HIPERTERMIA MAGNETICA
HIDROXIAPATITA
SENSOR DE RADIACION
title_short Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
title_full Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
title_fullStr Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
title_full_unstemmed Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
title_sort Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante
dc.creator.none.fl_str_mv Nuñez, Nahuel
Rainieri Andersen, Mariana
Lima Jr., Enio
Troiani, Horacio Esteban
Tobia, Dina
Zysler, Roberto Daniel
Winkler, Elin Lilian
author Nuñez, Nahuel
author_facet Nuñez, Nahuel
Rainieri Andersen, Mariana
Lima Jr., Enio
Troiani, Horacio Esteban
Tobia, Dina
Zysler, Roberto Daniel
Winkler, Elin Lilian
author_role author
author2 Rainieri Andersen, Mariana
Lima Jr., Enio
Troiani, Horacio Esteban
Tobia, Dina
Zysler, Roberto Daniel
Winkler, Elin Lilian
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv COMPUESTO BIFUNCIONAL
NANOPARTICULAS MAGNETICAS
HIPERTERMIA MAGNETICA
HIDROXIAPATITA
SENSOR DE RADIACION
topic COMPUESTO BIFUNCIONAL
NANOPARTICULAS MAGNETICAS
HIPERTERMIA MAGNETICA
HIDROXIAPATITA
SENSOR DE RADIACION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv En este trabajo se sintetizaron nanopartículas de ferrita de zinc, a partir de las cuales se fabricaron compuestos integrados por nanopartículas embebidas en hidroxiapatita carbonatada (NPsHAP). Tanto las nanopartículas como el compuesto NPsHAP fueron caracterizados morfológica y estructuralmente, determinando un diámetro medio de las nanopartículas de (18 ± 3) nm inmersas en una matriz de hidroxiapatita de tamaño micrométrico. A partir de ciclos M vs. H se determinó que las nanopartículas poseen una magnetización de saturación de (56 ± 2) A.m2 /kg. Se realizaron mediciones de hipertermia magnética dispersando las muestras sintetizadas en medios de diferente viscosidad. Los resultados confirman que las nanopartículas son aptas para producir calentamiento por hipertermia magnética tanto en medios viscosos como no viscosos, indicando que la relajación del momento magnético está dominada por el mecanismo de Néel. Mediante resonancia paramagnética electrónica se estudió la sensibilidad de la hidroxiapatita al ser expuesta a rayos X y además se analizó el efecto del recocido previo a la irradiación en la estabilidad de los defectos generados. El radical 2 − es el principal defecto observado con la presencia de especies secundarias cuya intensidad varía según el tratamiento. El compuesto NPsHAP también presenta defectos paramagnéticos al ser irradiado los cuales provienen de la hidroxiapatita. Estos resultados demuestran la bifuncionalidad del nanocompuesto fabricado, lo cual es promisorio para avanzar en el desarrollo y aplicación de nuevos materiales para terapias oncológicas por hipertermia magnética y como sensores locales de radiación ionizante.
In this study, zinc ferrite nanoparticles were synthesized, from which composites were fabricated by embedding the nanoparticles in carbonate hydroxyapatite (NPsHAP). Both, the nanoparticles and the NPsHAP composite, were morphologically and structurally characterized, revealing an average nanoparticle diameter of (18 ± 3) nm embedded in a micrometric hydroxyapatite matrix. Magnetic hysteresis loops (M vs H) analysis determined that the nanoparticles exhibit a saturation magnetization of (56 ± 2) A.m2 /kg. Magnetic hyperthermia measurements were conducted by dispersing the synthesized samples in media with different viscosities. The results confirm that the nanoparticles are suitable for generating magnetic hyperthermia heating in both viscous and non-viscous media, indicating that magnetic moment relaxation is dominated by the Neel mechanism. Electron paramagnetic resonance (EPR) was employed to study the sensitivity of hydroxyapatite to X-ray exposure, and the effect of annealing prior to irradiation on the stability of the generated defects. The 2 − radical was identified as the primary defect observed, with the presence of secondary species whose intensity varied depending on the treatment. The NPsHAP composite also exhibits paramagnetic defects upon irradiation, originating from the hydroxyapatite component. These findings demonstrate the bifunctionality of the fabricated nanocomposite, which holds promise for advancing the development and application of new materials for oncological hyperthermia therapy and as local sensors for ionizing radiation.
Fil: Nuñez, Nahuel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Rainieri Andersen, Mariana. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Lima Jr., Enio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina
Fil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tobia, Dina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina
Fil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Winkler, Elin Lilian. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
description En este trabajo se sintetizaron nanopartículas de ferrita de zinc, a partir de las cuales se fabricaron compuestos integrados por nanopartículas embebidas en hidroxiapatita carbonatada (NPsHAP). Tanto las nanopartículas como el compuesto NPsHAP fueron caracterizados morfológica y estructuralmente, determinando un diámetro medio de las nanopartículas de (18 ± 3) nm inmersas en una matriz de hidroxiapatita de tamaño micrométrico. A partir de ciclos M vs. H se determinó que las nanopartículas poseen una magnetización de saturación de (56 ± 2) A.m2 /kg. Se realizaron mediciones de hipertermia magnética dispersando las muestras sintetizadas en medios de diferente viscosidad. Los resultados confirman que las nanopartículas son aptas para producir calentamiento por hipertermia magnética tanto en medios viscosos como no viscosos, indicando que la relajación del momento magnético está dominada por el mecanismo de Néel. Mediante resonancia paramagnética electrónica se estudió la sensibilidad de la hidroxiapatita al ser expuesta a rayos X y además se analizó el efecto del recocido previo a la irradiación en la estabilidad de los defectos generados. El radical 2 − es el principal defecto observado con la presencia de especies secundarias cuya intensidad varía según el tratamiento. El compuesto NPsHAP también presenta defectos paramagnéticos al ser irradiado los cuales provienen de la hidroxiapatita. Estos resultados demuestran la bifuncionalidad del nanocompuesto fabricado, lo cual es promisorio para avanzar en el desarrollo y aplicación de nuevos materiales para terapias oncológicas por hipertermia magnética y como sensores locales de radiación ionizante.
publishDate 2023
dc.date.none.fl_str_mv 2023-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/228783
Nuñez, Nahuel; Rainieri Andersen, Mariana; Lima Jr., Enio; Troiani, Horacio Esteban; Tobia, Dina; et al.; Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante; Asociación Argentina de Materiales; Revista SAM; 1; 11-2023; 14-26
1668-4788
CONICET Digital
CONICET
url http://hdl.handle.net/11336/228783
identifier_str_mv Nuñez, Nahuel; Rainieri Andersen, Mariana; Lima Jr., Enio; Troiani, Horacio Esteban; Tobia, Dina; et al.; Desarrollo de nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante; Asociación Argentina de Materiales; Revista SAM; 1; 11-2023; 14-26
1668-4788
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://materiales-sam.org.ar/sam/ultimo-numero-de-la-revista-sam/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Materiales
publisher.none.fl_str_mv Asociación Argentina de Materiales
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269071685451776
score 13.13397