Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1.
- Autores
- Pearce, Stephen; Vanzetti, Leonardo Sebastián; Dubcovsky, Jorge
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The activation of the meristem identity gene VERNALIZATION1 (VRN1) is a critical regulatory point in wheat (Triticum spp.) flowering. In photoperiod-sensitive wheat varieties, VRN1 is expressed only under long days (LDs), but mutants carrying deletions in a regulatory element in its promoter show VRN1 transcription and early spike development under short days (SDs). However, complete spike development is delayed until plants are transferred to LDs, indicating the existence of an additional regulatory mechanism dependent on LDs. We show here that exogenous gibberellin (GA) application accelerates spike development under SDs, but only in wheat lines expressing VRN1. The simultaneous presence of GA and VRN1 results in the up-regulation of the floral meristem identity genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY, whereas inhibition of GA biosynthesis with paclobutrazol precludes the LD induction of these two genes. The inductive role of GA on wheat flowering is further supported by the up-regulation of GA biosynthetic genes in the apices of plants transferred from SDs to LDs and in photoperiod-insensitive and transgenic wheat plants with increased FLOWERING LOCUS T transcription under SDs. The up-regulation of GA biosynthetic genes was not observed in the leaves of the same genetic stocks. Based on these observations, we propose a model in which FLOWERING LOCUS T is up-regulated in the leaves under LDs and is then transported to the shoot apical meristem, where it simultaneously induces the expression of VRN1 and GA biosynthetic genes, which are both required for the up-regulation of the early floral meristem genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY and the timely development of the wheat spike.
Fil: Pearce, Stephen. University of California at Davis; Estados Unidos
Fil: Vanzetti, Leonardo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina
Fil: Dubcovsky, Jorge. Howard Hughes Medical Institute; Estados Unidos - Materia
-
Wheat
Gibberellins
Vrn-1
Flowering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26632
Ver los metadatos del registro completo
id |
CONICETDig_bec9bb73230f21c9bbd491911f2d2f79 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26632 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1.Pearce, StephenVanzetti, Leonardo SebastiánDubcovsky, JorgeWheatGibberellinsVrn-1Floweringhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The activation of the meristem identity gene VERNALIZATION1 (VRN1) is a critical regulatory point in wheat (Triticum spp.) flowering. In photoperiod-sensitive wheat varieties, VRN1 is expressed only under long days (LDs), but mutants carrying deletions in a regulatory element in its promoter show VRN1 transcription and early spike development under short days (SDs). However, complete spike development is delayed until plants are transferred to LDs, indicating the existence of an additional regulatory mechanism dependent on LDs. We show here that exogenous gibberellin (GA) application accelerates spike development under SDs, but only in wheat lines expressing VRN1. The simultaneous presence of GA and VRN1 results in the up-regulation of the floral meristem identity genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY, whereas inhibition of GA biosynthesis with paclobutrazol precludes the LD induction of these two genes. The inductive role of GA on wheat flowering is further supported by the up-regulation of GA biosynthetic genes in the apices of plants transferred from SDs to LDs and in photoperiod-insensitive and transgenic wheat plants with increased FLOWERING LOCUS T transcription under SDs. The up-regulation of GA biosynthetic genes was not observed in the leaves of the same genetic stocks. Based on these observations, we propose a model in which FLOWERING LOCUS T is up-regulated in the leaves under LDs and is then transported to the shoot apical meristem, where it simultaneously induces the expression of VRN1 and GA biosynthetic genes, which are both required for the up-regulation of the early floral meristem genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY and the timely development of the wheat spike.Fil: Pearce, Stephen. University of California at Davis; Estados UnidosFil: Vanzetti, Leonardo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Fisiología y Recursos Genéticos Vegetales; ArgentinaFil: Dubcovsky, Jorge. Howard Hughes Medical Institute; Estados UnidosAmerican Society of Plant Biologist2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26632Pearce, Stephen; Vanzetti, Leonardo Sebastián; Dubcovsky, Jorge; Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1.; American Society of Plant Biologist; Plant Physiology; 163; 3; 11-2013; 1433-14450032-0889CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.plantphysiology.org/content/163/3/1433.shortinfo:eu-repo/semantics/altIdentifier/doi/10.1104/pp.113.225854info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:07Zoai:ri.conicet.gov.ar:11336/26632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:07.447CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. |
title |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. |
spellingShingle |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. Pearce, Stephen Wheat Gibberellins Vrn-1 Flowering |
title_short |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. |
title_full |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. |
title_fullStr |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. |
title_full_unstemmed |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. |
title_sort |
Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. |
dc.creator.none.fl_str_mv |
Pearce, Stephen Vanzetti, Leonardo Sebastián Dubcovsky, Jorge |
author |
Pearce, Stephen |
author_facet |
Pearce, Stephen Vanzetti, Leonardo Sebastián Dubcovsky, Jorge |
author_role |
author |
author2 |
Vanzetti, Leonardo Sebastián Dubcovsky, Jorge |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Wheat Gibberellins Vrn-1 Flowering |
topic |
Wheat Gibberellins Vrn-1 Flowering |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The activation of the meristem identity gene VERNALIZATION1 (VRN1) is a critical regulatory point in wheat (Triticum spp.) flowering. In photoperiod-sensitive wheat varieties, VRN1 is expressed only under long days (LDs), but mutants carrying deletions in a regulatory element in its promoter show VRN1 transcription and early spike development under short days (SDs). However, complete spike development is delayed until plants are transferred to LDs, indicating the existence of an additional regulatory mechanism dependent on LDs. We show here that exogenous gibberellin (GA) application accelerates spike development under SDs, but only in wheat lines expressing VRN1. The simultaneous presence of GA and VRN1 results in the up-regulation of the floral meristem identity genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY, whereas inhibition of GA biosynthesis with paclobutrazol precludes the LD induction of these two genes. The inductive role of GA on wheat flowering is further supported by the up-regulation of GA biosynthetic genes in the apices of plants transferred from SDs to LDs and in photoperiod-insensitive and transgenic wheat plants with increased FLOWERING LOCUS T transcription under SDs. The up-regulation of GA biosynthetic genes was not observed in the leaves of the same genetic stocks. Based on these observations, we propose a model in which FLOWERING LOCUS T is up-regulated in the leaves under LDs and is then transported to the shoot apical meristem, where it simultaneously induces the expression of VRN1 and GA biosynthetic genes, which are both required for the up-regulation of the early floral meristem genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY and the timely development of the wheat spike. Fil: Pearce, Stephen. University of California at Davis; Estados Unidos Fil: Vanzetti, Leonardo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina Fil: Dubcovsky, Jorge. Howard Hughes Medical Institute; Estados Unidos |
description |
The activation of the meristem identity gene VERNALIZATION1 (VRN1) is a critical regulatory point in wheat (Triticum spp.) flowering. In photoperiod-sensitive wheat varieties, VRN1 is expressed only under long days (LDs), but mutants carrying deletions in a regulatory element in its promoter show VRN1 transcription and early spike development under short days (SDs). However, complete spike development is delayed until plants are transferred to LDs, indicating the existence of an additional regulatory mechanism dependent on LDs. We show here that exogenous gibberellin (GA) application accelerates spike development under SDs, but only in wheat lines expressing VRN1. The simultaneous presence of GA and VRN1 results in the up-regulation of the floral meristem identity genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY, whereas inhibition of GA biosynthesis with paclobutrazol precludes the LD induction of these two genes. The inductive role of GA on wheat flowering is further supported by the up-regulation of GA biosynthetic genes in the apices of plants transferred from SDs to LDs and in photoperiod-insensitive and transgenic wheat plants with increased FLOWERING LOCUS T transcription under SDs. The up-regulation of GA biosynthetic genes was not observed in the leaves of the same genetic stocks. Based on these observations, we propose a model in which FLOWERING LOCUS T is up-regulated in the leaves under LDs and is then transported to the shoot apical meristem, where it simultaneously induces the expression of VRN1 and GA biosynthetic genes, which are both required for the up-regulation of the early floral meristem genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY and the timely development of the wheat spike. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26632 Pearce, Stephen; Vanzetti, Leonardo Sebastián; Dubcovsky, Jorge; Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1.; American Society of Plant Biologist; Plant Physiology; 163; 3; 11-2013; 1433-1445 0032-0889 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26632 |
identifier_str_mv |
Pearce, Stephen; Vanzetti, Leonardo Sebastián; Dubcovsky, Jorge; Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1.; American Society of Plant Biologist; Plant Physiology; 163; 3; 11-2013; 1433-1445 0032-0889 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.plantphysiology.org/content/163/3/1433.short info:eu-repo/semantics/altIdentifier/doi/10.1104/pp.113.225854 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Plant Biologist |
publisher.none.fl_str_mv |
American Society of Plant Biologist |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981217506426880 |
score |
12.48226 |