Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design

Autores
Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; Kavanaugh, Maria T.; de Azevedo Mazzuco, Ana Carolina; Cordeiro, Cesar A.M.M.; Simoes, Nuno; Macaya, Erasmo C.; Moity, Nicolas; Londoño-Cruz, Edgardo; Helmuth, Brian; Choi, Francis; Soto, Eulogio H.; Miloslavich, Patricia; Muller-Karger, Frank E.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs.
Fil: Montes, Enrique. NOAA Atlantic Oceanographic and Meteorological Laboratory; Estados Unidos
Fil: Lefcheck, Jonathan. Charles Darwin Foundation Santa Cruz; Ecuador
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Espíritu Santo; Ecuador
Fil: Guerra-Castro, Edlin. Universidad Nacional Autónoma de México; México
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela
Fil: Kavanaugh, Maria T.. Oregon State University; Estados Unidos
Fil: de Azevedo Mazzuco, Ana Carolina. Universidade Federal do Espírito Santo; Brasil
Fil: Cordeiro, Cesar A.M.M.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Simoes, Nuno. Universidad Nacional Autónoma de México; México. Texas A&M University-Corpus Christi; Estados Unidos
Fil: Macaya, Erasmo C.. Universidad de Concepción; Chile
Fil: Moity, Nicolas. Charles Darwin Foundation; Ecuador
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia
Fil: Helmuth, Brian. Northeastern University; Estados Unidos
Fil: Choi, Francis. Northeastern University; Estados Unidos
Fil: Soto, Eulogio H.. Universidad de Valparaíso; Chile
Fil: Miloslavich, Patricia. University of Delaware; Estados Unidos
Fil: Muller-Karger, Frank E.. University of South Florida; Estados Unidos
Materia
MONITORING
LARGE SCALE
MBON
INTERTIDAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170274

id CONICETDig_bebbb1b926b416ac142d6f2338df1c99
oai_identifier_str oai:ri.conicet.gov.ar:11336/170274
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey DesignMontes, EnriqueLefcheck, JonathanBigatti, GregorioGuerra-Castro, EdlinKlein, EduardoKavanaugh, Maria T.de Azevedo Mazzuco, Ana CarolinaCordeiro, Cesar A.M.M.Simoes, NunoMacaya, Erasmo C.Moity, NicolasLondoño-Cruz, EdgardoHelmuth, BrianChoi, FrancisSoto, Eulogio H.Miloslavich, PatriciaMuller-Karger, Frank E.MONITORINGLARGE SCALEMBONINTERTIDALhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs.Fil: Montes, Enrique. NOAA Atlantic Oceanographic and Meteorological Laboratory; Estados UnidosFil: Lefcheck, Jonathan. Charles Darwin Foundation Santa Cruz; EcuadorFil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Espíritu Santo; EcuadorFil: Guerra-Castro, Edlin. Universidad Nacional Autónoma de México; MéxicoFil: Klein, Eduardo. Universidad Simón Bolívar; VenezuelaFil: Kavanaugh, Maria T.. Oregon State University; Estados UnidosFil: de Azevedo Mazzuco, Ana Carolina. Universidade Federal do Espírito Santo; BrasilFil: Cordeiro, Cesar A.M.M.. Universidade Federal do Rio de Janeiro; BrasilFil: Simoes, Nuno. Universidad Nacional Autónoma de México; México. Texas A&M University-Corpus Christi; Estados UnidosFil: Macaya, Erasmo C.. Universidad de Concepción; ChileFil: Moity, Nicolas. Charles Darwin Foundation; EcuadorFil: Londoño-Cruz, Edgardo. Universidad del Valle; ColombiaFil: Helmuth, Brian. Northeastern University; Estados UnidosFil: Choi, Francis. Northeastern University; Estados UnidosFil: Soto, Eulogio H.. Universidad de Valparaíso; ChileFil: Miloslavich, Patricia. University of Delaware; Estados UnidosFil: Muller-Karger, Frank E.. University of South Florida; Estados UnidosOceanography Society2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170274Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; et al.; Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design; Oceanography Society; Oceanography; 34; 2; 11-2021; 80-911042-8275CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5670/oceanog.2021.216info:eu-repo/semantics/altIdentifier/url/https://tos.org/oceanography/article/optimizing-large-scale-biodiversity-sampling-effort-toward-an-unbalanced-survey-designinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:21Zoai:ri.conicet.gov.ar:11336/170274instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:21.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
title Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
spellingShingle Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
Montes, Enrique
MONITORING
LARGE SCALE
MBON
INTERTIDAL
title_short Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
title_full Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
title_fullStr Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
title_full_unstemmed Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
title_sort Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
dc.creator.none.fl_str_mv Montes, Enrique
Lefcheck, Jonathan
Bigatti, Gregorio
Guerra-Castro, Edlin
Klein, Eduardo
Kavanaugh, Maria T.
de Azevedo Mazzuco, Ana Carolina
Cordeiro, Cesar A.M.M.
Simoes, Nuno
Macaya, Erasmo C.
Moity, Nicolas
Londoño-Cruz, Edgardo
Helmuth, Brian
Choi, Francis
Soto, Eulogio H.
Miloslavich, Patricia
Muller-Karger, Frank E.
author Montes, Enrique
author_facet Montes, Enrique
Lefcheck, Jonathan
Bigatti, Gregorio
Guerra-Castro, Edlin
Klein, Eduardo
Kavanaugh, Maria T.
de Azevedo Mazzuco, Ana Carolina
Cordeiro, Cesar A.M.M.
Simoes, Nuno
Macaya, Erasmo C.
Moity, Nicolas
Londoño-Cruz, Edgardo
Helmuth, Brian
Choi, Francis
Soto, Eulogio H.
Miloslavich, Patricia
Muller-Karger, Frank E.
author_role author
author2 Lefcheck, Jonathan
Bigatti, Gregorio
Guerra-Castro, Edlin
Klein, Eduardo
Kavanaugh, Maria T.
de Azevedo Mazzuco, Ana Carolina
Cordeiro, Cesar A.M.M.
Simoes, Nuno
Macaya, Erasmo C.
Moity, Nicolas
Londoño-Cruz, Edgardo
Helmuth, Brian
Choi, Francis
Soto, Eulogio H.
Miloslavich, Patricia
Muller-Karger, Frank E.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MONITORING
LARGE SCALE
MBON
INTERTIDAL
topic MONITORING
LARGE SCALE
MBON
INTERTIDAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs.
Fil: Montes, Enrique. NOAA Atlantic Oceanographic and Meteorological Laboratory; Estados Unidos
Fil: Lefcheck, Jonathan. Charles Darwin Foundation Santa Cruz; Ecuador
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Espíritu Santo; Ecuador
Fil: Guerra-Castro, Edlin. Universidad Nacional Autónoma de México; México
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela
Fil: Kavanaugh, Maria T.. Oregon State University; Estados Unidos
Fil: de Azevedo Mazzuco, Ana Carolina. Universidade Federal do Espírito Santo; Brasil
Fil: Cordeiro, Cesar A.M.M.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Simoes, Nuno. Universidad Nacional Autónoma de México; México. Texas A&M University-Corpus Christi; Estados Unidos
Fil: Macaya, Erasmo C.. Universidad de Concepción; Chile
Fil: Moity, Nicolas. Charles Darwin Foundation; Ecuador
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia
Fil: Helmuth, Brian. Northeastern University; Estados Unidos
Fil: Choi, Francis. Northeastern University; Estados Unidos
Fil: Soto, Eulogio H.. Universidad de Valparaíso; Chile
Fil: Miloslavich, Patricia. University of Delaware; Estados Unidos
Fil: Muller-Karger, Frank E.. University of South Florida; Estados Unidos
description Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170274
Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; et al.; Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design; Oceanography Society; Oceanography; 34; 2; 11-2021; 80-91
1042-8275
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170274
identifier_str_mv Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; et al.; Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design; Oceanography Society; Oceanography; 34; 2; 11-2021; 80-91
1042-8275
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5670/oceanog.2021.216
info:eu-repo/semantics/altIdentifier/url/https://tos.org/oceanography/article/optimizing-large-scale-biodiversity-sampling-effort-toward-an-unbalanced-survey-design
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oceanography Society
publisher.none.fl_str_mv Oceanography Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613365445427200
score 13.070432