Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design
- Autores
- Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; Kavanaugh, Maria T.; de Azevedo Mazzuco, Ana Carolina; Cordeiro, Cesar A.M.M.; Simoes, Nuno; Macaya, Erasmo C.; Moity, Nicolas; Londoño-Cruz, Edgardo; Helmuth, Brian; Choi, Francis; Soto, Eulogio H.; Miloslavich, Patricia; Muller-Karger, Frank E.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs.
Fil: Montes, Enrique. NOAA Atlantic Oceanographic and Meteorological Laboratory; Estados Unidos
Fil: Lefcheck, Jonathan. Charles Darwin Foundation Santa Cruz; Ecuador
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Espíritu Santo; Ecuador
Fil: Guerra-Castro, Edlin. Universidad Nacional Autónoma de México; México
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela
Fil: Kavanaugh, Maria T.. Oregon State University; Estados Unidos
Fil: de Azevedo Mazzuco, Ana Carolina. Universidade Federal do Espírito Santo; Brasil
Fil: Cordeiro, Cesar A.M.M.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Simoes, Nuno. Universidad Nacional Autónoma de México; México. Texas A&M University-Corpus Christi; Estados Unidos
Fil: Macaya, Erasmo C.. Universidad de Concepción; Chile
Fil: Moity, Nicolas. Charles Darwin Foundation; Ecuador
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia
Fil: Helmuth, Brian. Northeastern University; Estados Unidos
Fil: Choi, Francis. Northeastern University; Estados Unidos
Fil: Soto, Eulogio H.. Universidad de Valparaíso; Chile
Fil: Miloslavich, Patricia. University of Delaware; Estados Unidos
Fil: Muller-Karger, Frank E.. University of South Florida; Estados Unidos - Materia
-
MONITORING
LARGE SCALE
MBON
INTERTIDAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/170274
Ver los metadatos del registro completo
id |
CONICETDig_bebbb1b926b416ac142d6f2338df1c99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/170274 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey DesignMontes, EnriqueLefcheck, JonathanBigatti, GregorioGuerra-Castro, EdlinKlein, EduardoKavanaugh, Maria T.de Azevedo Mazzuco, Ana CarolinaCordeiro, Cesar A.M.M.Simoes, NunoMacaya, Erasmo C.Moity, NicolasLondoño-Cruz, EdgardoHelmuth, BrianChoi, FrancisSoto, Eulogio H.Miloslavich, PatriciaMuller-Karger, Frank E.MONITORINGLARGE SCALEMBONINTERTIDALhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs.Fil: Montes, Enrique. NOAA Atlantic Oceanographic and Meteorological Laboratory; Estados UnidosFil: Lefcheck, Jonathan. Charles Darwin Foundation Santa Cruz; EcuadorFil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Espíritu Santo; EcuadorFil: Guerra-Castro, Edlin. Universidad Nacional Autónoma de México; MéxicoFil: Klein, Eduardo. Universidad Simón Bolívar; VenezuelaFil: Kavanaugh, Maria T.. Oregon State University; Estados UnidosFil: de Azevedo Mazzuco, Ana Carolina. Universidade Federal do Espírito Santo; BrasilFil: Cordeiro, Cesar A.M.M.. Universidade Federal do Rio de Janeiro; BrasilFil: Simoes, Nuno. Universidad Nacional Autónoma de México; México. Texas A&M University-Corpus Christi; Estados UnidosFil: Macaya, Erasmo C.. Universidad de Concepción; ChileFil: Moity, Nicolas. Charles Darwin Foundation; EcuadorFil: Londoño-Cruz, Edgardo. Universidad del Valle; ColombiaFil: Helmuth, Brian. Northeastern University; Estados UnidosFil: Choi, Francis. Northeastern University; Estados UnidosFil: Soto, Eulogio H.. Universidad de Valparaíso; ChileFil: Miloslavich, Patricia. University of Delaware; Estados UnidosFil: Muller-Karger, Frank E.. University of South Florida; Estados UnidosOceanography Society2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170274Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; et al.; Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design; Oceanography Society; Oceanography; 34; 2; 11-2021; 80-911042-8275CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5670/oceanog.2021.216info:eu-repo/semantics/altIdentifier/url/https://tos.org/oceanography/article/optimizing-large-scale-biodiversity-sampling-effort-toward-an-unbalanced-survey-designinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:21Zoai:ri.conicet.gov.ar:11336/170274instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:21.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design |
title |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design |
spellingShingle |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design Montes, Enrique MONITORING LARGE SCALE MBON INTERTIDAL |
title_short |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design |
title_full |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design |
title_fullStr |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design |
title_full_unstemmed |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design |
title_sort |
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design |
dc.creator.none.fl_str_mv |
Montes, Enrique Lefcheck, Jonathan Bigatti, Gregorio Guerra-Castro, Edlin Klein, Eduardo Kavanaugh, Maria T. de Azevedo Mazzuco, Ana Carolina Cordeiro, Cesar A.M.M. Simoes, Nuno Macaya, Erasmo C. Moity, Nicolas Londoño-Cruz, Edgardo Helmuth, Brian Choi, Francis Soto, Eulogio H. Miloslavich, Patricia Muller-Karger, Frank E. |
author |
Montes, Enrique |
author_facet |
Montes, Enrique Lefcheck, Jonathan Bigatti, Gregorio Guerra-Castro, Edlin Klein, Eduardo Kavanaugh, Maria T. de Azevedo Mazzuco, Ana Carolina Cordeiro, Cesar A.M.M. Simoes, Nuno Macaya, Erasmo C. Moity, Nicolas Londoño-Cruz, Edgardo Helmuth, Brian Choi, Francis Soto, Eulogio H. Miloslavich, Patricia Muller-Karger, Frank E. |
author_role |
author |
author2 |
Lefcheck, Jonathan Bigatti, Gregorio Guerra-Castro, Edlin Klein, Eduardo Kavanaugh, Maria T. de Azevedo Mazzuco, Ana Carolina Cordeiro, Cesar A.M.M. Simoes, Nuno Macaya, Erasmo C. Moity, Nicolas Londoño-Cruz, Edgardo Helmuth, Brian Choi, Francis Soto, Eulogio H. Miloslavich, Patricia Muller-Karger, Frank E. |
author2_role |
author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
MONITORING LARGE SCALE MBON INTERTIDAL |
topic |
MONITORING LARGE SCALE MBON INTERTIDAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs. Fil: Montes, Enrique. NOAA Atlantic Oceanographic and Meteorological Laboratory; Estados Unidos Fil: Lefcheck, Jonathan. Charles Darwin Foundation Santa Cruz; Ecuador Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Espíritu Santo; Ecuador Fil: Guerra-Castro, Edlin. Universidad Nacional Autónoma de México; México Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela Fil: Kavanaugh, Maria T.. Oregon State University; Estados Unidos Fil: de Azevedo Mazzuco, Ana Carolina. Universidade Federal do Espírito Santo; Brasil Fil: Cordeiro, Cesar A.M.M.. Universidade Federal do Rio de Janeiro; Brasil Fil: Simoes, Nuno. Universidad Nacional Autónoma de México; México. Texas A&M University-Corpus Christi; Estados Unidos Fil: Macaya, Erasmo C.. Universidad de Concepción; Chile Fil: Moity, Nicolas. Charles Darwin Foundation; Ecuador Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia Fil: Helmuth, Brian. Northeastern University; Estados Unidos Fil: Choi, Francis. Northeastern University; Estados Unidos Fil: Soto, Eulogio H.. Universidad de Valparaíso; Chile Fil: Miloslavich, Patricia. University of Delaware; Estados Unidos Fil: Muller-Karger, Frank E.. University of South Florida; Estados Unidos |
description |
Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/170274 Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; et al.; Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design; Oceanography Society; Oceanography; 34; 2; 11-2021; 80-91 1042-8275 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/170274 |
identifier_str_mv |
Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; et al.; Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design; Oceanography Society; Oceanography; 34; 2; 11-2021; 80-91 1042-8275 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5670/oceanog.2021.216 info:eu-repo/semantics/altIdentifier/url/https://tos.org/oceanography/article/optimizing-large-scale-biodiversity-sampling-effort-toward-an-unbalanced-survey-design |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oceanography Society |
publisher.none.fl_str_mv |
Oceanography Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613365445427200 |
score |
13.070432 |