An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
- Autores
- Allegrini, Franco; Olivieri, Alejandro Cesar
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
MULTIVARIATE CALIBRATION
OUTLIER DETECTION
PARTIAL LEAST-SQUARES
PRE-PROCESSING SELECTION
SAMPLE SELECTION
VARIABLE SELECTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95095
Ver los metadatos del registro completo
| id |
CONICETDig_be9c0608a0f001c6871428df37ddabc4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95095 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibrationAllegrini, FrancoOlivieri, Alejandro CesarMULTIVARIATE CALIBRATIONOUTLIER DETECTIONPARTIAL LEAST-SQUARESPRE-PROCESSING SELECTIONSAMPLE SELECTIONVARIABLE SELECTIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaElsevier Science2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95095Allegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-7600039-9140CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914013005511info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2013.06.051info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:50:23Zoai:ri.conicet.gov.ar:11336/95095instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:50:23.791CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
| title |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
| spellingShingle |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration Allegrini, Franco MULTIVARIATE CALIBRATION OUTLIER DETECTION PARTIAL LEAST-SQUARES PRE-PROCESSING SELECTION SAMPLE SELECTION VARIABLE SELECTION |
| title_short |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
| title_full |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
| title_fullStr |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
| title_full_unstemmed |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
| title_sort |
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
| dc.creator.none.fl_str_mv |
Allegrini, Franco Olivieri, Alejandro Cesar |
| author |
Allegrini, Franco |
| author_facet |
Allegrini, Franco Olivieri, Alejandro Cesar |
| author_role |
author |
| author2 |
Olivieri, Alejandro Cesar |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
MULTIVARIATE CALIBRATION OUTLIER DETECTION PARTIAL LEAST-SQUARES PRE-PROCESSING SELECTION SAMPLE SELECTION VARIABLE SELECTION |
| topic |
MULTIVARIATE CALIBRATION OUTLIER DETECTION PARTIAL LEAST-SQUARES PRE-PROCESSING SELECTION SAMPLE SELECTION VARIABLE SELECTION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach. Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
| description |
A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95095 Allegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-760 0039-9140 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/95095 |
| identifier_str_mv |
Allegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-760 0039-9140 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914013005511 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2013.06.051 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977212941172736 |
| score |
13.087074 |