An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration

Autores
Allegrini, Franco; Olivieri, Alejandro Cesar
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Materia
MULTIVARIATE CALIBRATION
OUTLIER DETECTION
PARTIAL LEAST-SQUARES
PRE-PROCESSING SELECTION
SAMPLE SELECTION
VARIABLE SELECTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95095

id CONICETDig_be9c0608a0f001c6871428df37ddabc4
oai_identifier_str oai:ri.conicet.gov.ar:11336/95095
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibrationAllegrini, FrancoOlivieri, Alejandro CesarMULTIVARIATE CALIBRATIONOUTLIER DETECTIONPARTIAL LEAST-SQUARESPRE-PROCESSING SELECTIONSAMPLE SELECTIONVARIABLE SELECTIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaElsevier Science2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95095Allegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-7600039-9140CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914013005511info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2013.06.051info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:09Zoai:ri.conicet.gov.ar:11336/95095instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:09.972CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
title An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
spellingShingle An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
Allegrini, Franco
MULTIVARIATE CALIBRATION
OUTLIER DETECTION
PARTIAL LEAST-SQUARES
PRE-PROCESSING SELECTION
SAMPLE SELECTION
VARIABLE SELECTION
title_short An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
title_full An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
title_fullStr An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
title_full_unstemmed An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
title_sort An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
dc.creator.none.fl_str_mv Allegrini, Franco
Olivieri, Alejandro Cesar
author Allegrini, Franco
author_facet Allegrini, Franco
Olivieri, Alejandro Cesar
author_role author
author2 Olivieri, Alejandro Cesar
author2_role author
dc.subject.none.fl_str_mv MULTIVARIATE CALIBRATION
OUTLIER DETECTION
PARTIAL LEAST-SQUARES
PRE-PROCESSING SELECTION
SAMPLE SELECTION
VARIABLE SELECTION
topic MULTIVARIATE CALIBRATION
OUTLIER DETECTION
PARTIAL LEAST-SQUARES
PRE-PROCESSING SELECTION
SAMPLE SELECTION
VARIABLE SELECTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
description A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95095
Allegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-760
0039-9140
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95095
identifier_str_mv Allegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-760
0039-9140
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914013005511
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2013.06.051
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082922111565824
score 13.22299