Quantified Gamow shell model interaction for psd -shell nuclei
- Autores
- Jaganathen, Y.; Id Betan, Rodolfo Mohamed; Michel, N.; Nazarewicz, W.; Ploszajczak, M.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 512 at the p-sd-shell interface. Method: The one-body potential of the He4 core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-He4 scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A=9. A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. Conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart.
Fil: Jaganathen, Y.. Michigan State University; Estados Unidos
Fil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Michel, N.. Michigan State University; Estados Unidos
Fil: Nazarewicz, W.. Michigan State University; Estados Unidos
Fil: Ploszajczak, M.. Grand Accelérateur National d’Ions Lourds; Francia - Materia
-
Gamow
Effective interaction
Berggren
Continuum - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64145
Ver los metadatos del registro completo
id |
CONICETDig_be8a11532eddd7b0a1540748b37bc65c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64145 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantified Gamow shell model interaction for psd -shell nucleiJaganathen, Y.Id Betan, Rodolfo MohamedMichel, N.Nazarewicz, W.Ploszajczak, M.GamowEffective interactionBerggrenContinuumhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 512 at the p-sd-shell interface. Method: The one-body potential of the He4 core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-He4 scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A=9. A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. Conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart.Fil: Jaganathen, Y.. Michigan State University; Estados UnidosFil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Michel, N.. Michigan State University; Estados UnidosFil: Nazarewicz, W.. Michigan State University; Estados UnidosFil: Ploszajczak, M.. Grand Accelérateur National d’Ions Lourds; FranciaAmerican Physical Society2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64145Jaganathen, Y.; Id Betan, Rodolfo Mohamed; Michel, N.; Nazarewicz, W.; Ploszajczak, M.; Quantified Gamow shell model interaction for psd -shell nuclei; American Physical Society; Physical Review C; 96; 5; 11-2017; 1-112469-9993CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevC.96.054316info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prc/abstract/10.1103/PhysRevC.96.054316info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:18Zoai:ri.conicet.gov.ar:11336/64145instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:18.694CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantified Gamow shell model interaction for psd -shell nuclei |
title |
Quantified Gamow shell model interaction for psd -shell nuclei |
spellingShingle |
Quantified Gamow shell model interaction for psd -shell nuclei Jaganathen, Y. Gamow Effective interaction Berggren Continuum |
title_short |
Quantified Gamow shell model interaction for psd -shell nuclei |
title_full |
Quantified Gamow shell model interaction for psd -shell nuclei |
title_fullStr |
Quantified Gamow shell model interaction for psd -shell nuclei |
title_full_unstemmed |
Quantified Gamow shell model interaction for psd -shell nuclei |
title_sort |
Quantified Gamow shell model interaction for psd -shell nuclei |
dc.creator.none.fl_str_mv |
Jaganathen, Y. Id Betan, Rodolfo Mohamed Michel, N. Nazarewicz, W. Ploszajczak, M. |
author |
Jaganathen, Y. |
author_facet |
Jaganathen, Y. Id Betan, Rodolfo Mohamed Michel, N. Nazarewicz, W. Ploszajczak, M. |
author_role |
author |
author2 |
Id Betan, Rodolfo Mohamed Michel, N. Nazarewicz, W. Ploszajczak, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Gamow Effective interaction Berggren Continuum |
topic |
Gamow Effective interaction Berggren Continuum |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 512 at the p-sd-shell interface. Method: The one-body potential of the He4 core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-He4 scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A=9. A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. Conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart. Fil: Jaganathen, Y.. Michigan State University; Estados Unidos Fil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Michel, N.. Michigan State University; Estados Unidos Fil: Nazarewicz, W.. Michigan State University; Estados Unidos Fil: Ploszajczak, M.. Grand Accelérateur National d’Ions Lourds; Francia |
description |
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 512 at the p-sd-shell interface. Method: The one-body potential of the He4 core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-He4 scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A=9. A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. Conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64145 Jaganathen, Y.; Id Betan, Rodolfo Mohamed; Michel, N.; Nazarewicz, W.; Ploszajczak, M.; Quantified Gamow shell model interaction for psd -shell nuclei; American Physical Society; Physical Review C; 96; 5; 11-2017; 1-11 2469-9993 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64145 |
identifier_str_mv |
Jaganathen, Y.; Id Betan, Rodolfo Mohamed; Michel, N.; Nazarewicz, W.; Ploszajczak, M.; Quantified Gamow shell model interaction for psd -shell nuclei; American Physical Society; Physical Review C; 96; 5; 11-2017; 1-11 2469-9993 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevC.96.054316 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prc/abstract/10.1103/PhysRevC.96.054316 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268849646338048 |
score |
13.13397 |