Gamow-shell-model description of Li isotopes and their mirror partners

Autores
Mao, X.; Rotureau, J.; Nazarewicz, W.; Michel, N.; Id Betan, Rodolfo Mohamed; Jaganathen, Y.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framework that is capable of treating resonant and nonresonant many-body states on equal footing. Purpose: In this work, we develop the complex-energy configuration interaction approach to describe binding energies and spectra of selected 5 ≤ A ≤ 11 nuclei. Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid 4He core. The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique. Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly known states. A case in point is our prediction for the pair of unbound mirror nuclei 10Li-10N in which a huge Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations. Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-line nuclei.
Fil: Mao, X.. Michigan State University; Estados Unidos
Fil: Rotureau, J.. Michigan State University; Estados Unidos
Fil: Nazarewicz, W.. Michigan State University; Estados Unidos
Fil: Michel, N.. Chinese Academy of Sciences; República de China
Fil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Jaganathen, Y.. Polish Academy of Sciences; Argentina
Materia
Gamow Shell Model
Drip line nuclei
Optimization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/183639

id CONICETDig_b96758f0bed29368a1c73543fb01d78f
oai_identifier_str oai:ri.conicet.gov.ar:11336/183639
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gamow-shell-model description of Li isotopes and their mirror partnersMao, X.Rotureau, J.Nazarewicz, W.Michel, N.Id Betan, Rodolfo MohamedJaganathen, Y.Gamow Shell ModelDrip line nucleiOptimizationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framework that is capable of treating resonant and nonresonant many-body states on equal footing. Purpose: In this work, we develop the complex-energy configuration interaction approach to describe binding energies and spectra of selected 5 ≤ A ≤ 11 nuclei. Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid 4He core. The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique. Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly known states. A case in point is our prediction for the pair of unbound mirror nuclei 10Li-10N in which a huge Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations. Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-line nuclei.Fil: Mao, X.. Michigan State University; Estados UnidosFil: Rotureau, J.. Michigan State University; Estados UnidosFil: Nazarewicz, W.. Michigan State University; Estados UnidosFil: Michel, N.. Chinese Academy of Sciences; República de ChinaFil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Jaganathen, Y.. Polish Academy of Sciences; ArgentinaAmerican Physical Society2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183639Mao, X.; Rotureau, J.; Nazarewicz, W.; Michel, N.; Id Betan, Rodolfo Mohamed; et al.; Gamow-shell-model description of Li isotopes and their mirror partners; American Physical Society; Physical Review C: Nuclear Physics; 102; 2; 8-2020; 243091-24309102469-99852469-9993CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevC.102.024309info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prc/abstract/10.1103/PhysRevC.102.024309info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/2004.02981.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:20:02Zoai:ri.conicet.gov.ar:11336/183639instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:20:02.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gamow-shell-model description of Li isotopes and their mirror partners
title Gamow-shell-model description of Li isotopes and their mirror partners
spellingShingle Gamow-shell-model description of Li isotopes and their mirror partners
Mao, X.
Gamow Shell Model
Drip line nuclei
Optimization
title_short Gamow-shell-model description of Li isotopes and their mirror partners
title_full Gamow-shell-model description of Li isotopes and their mirror partners
title_fullStr Gamow-shell-model description of Li isotopes and their mirror partners
title_full_unstemmed Gamow-shell-model description of Li isotopes and their mirror partners
title_sort Gamow-shell-model description of Li isotopes and their mirror partners
dc.creator.none.fl_str_mv Mao, X.
Rotureau, J.
Nazarewicz, W.
Michel, N.
Id Betan, Rodolfo Mohamed
Jaganathen, Y.
author Mao, X.
author_facet Mao, X.
Rotureau, J.
Nazarewicz, W.
Michel, N.
Id Betan, Rodolfo Mohamed
Jaganathen, Y.
author_role author
author2 Rotureau, J.
Nazarewicz, W.
Michel, N.
Id Betan, Rodolfo Mohamed
Jaganathen, Y.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Gamow Shell Model
Drip line nuclei
Optimization
topic Gamow Shell Model
Drip line nuclei
Optimization
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framework that is capable of treating resonant and nonresonant many-body states on equal footing. Purpose: In this work, we develop the complex-energy configuration interaction approach to describe binding energies and spectra of selected 5 ≤ A ≤ 11 nuclei. Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid 4He core. The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique. Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly known states. A case in point is our prediction for the pair of unbound mirror nuclei 10Li-10N in which a huge Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations. Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-line nuclei.
Fil: Mao, X.. Michigan State University; Estados Unidos
Fil: Rotureau, J.. Michigan State University; Estados Unidos
Fil: Nazarewicz, W.. Michigan State University; Estados Unidos
Fil: Michel, N.. Chinese Academy of Sciences; República de China
Fil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Jaganathen, Y.. Polish Academy of Sciences; Argentina
description Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framework that is capable of treating resonant and nonresonant many-body states on equal footing. Purpose: In this work, we develop the complex-energy configuration interaction approach to describe binding energies and spectra of selected 5 ≤ A ≤ 11 nuclei. Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid 4He core. The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique. Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly known states. A case in point is our prediction for the pair of unbound mirror nuclei 10Li-10N in which a huge Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations. Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-line nuclei.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/183639
Mao, X.; Rotureau, J.; Nazarewicz, W.; Michel, N.; Id Betan, Rodolfo Mohamed; et al.; Gamow-shell-model description of Li isotopes and their mirror partners; American Physical Society; Physical Review C: Nuclear Physics; 102; 2; 8-2020; 243091-2430910
2469-9985
2469-9993
CONICET Digital
CONICET
url http://hdl.handle.net/11336/183639
identifier_str_mv Mao, X.; Rotureau, J.; Nazarewicz, W.; Michel, N.; Id Betan, Rodolfo Mohamed; et al.; Gamow-shell-model description of Li isotopes and their mirror partners; American Physical Society; Physical Review C: Nuclear Physics; 102; 2; 8-2020; 243091-2430910
2469-9985
2469-9993
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevC.102.024309
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prc/abstract/10.1103/PhysRevC.102.024309
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/2004.02981.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781685203468288
score 12.982451