Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris

Autores
Orioli, Sofía; Santos, Javier; Ibañez, Lorena Itatí; D'alessio, Cecilia
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Introduction: Nanobodies (NBs) are small antibody fragments derived fromcamelid heavy-chain antibodies, which represent the minimal functionaldomain capable of antigen recognition and binding. NBs are 10 times smallerthan conventional antibodies, exhibit a compact structure, and have high stability,making them ideal for recombinant production. The eukaryotic unicellularsystem Pichia pastoris provides multiple advantages for protein expression,including the ability to perform several eukaryotic post-translationalmodifications such as glycosylation.Methods: In this work, we engineered a modular plasmid sequence that, throughspecific restriction enzyme cuts and ligations, codes the expression of a secretedanti-mouse kappa chain NB fused with various accessory peptides in P. pastoris.This system enables the incorporation of a plastic binding sequence forimmobilization onto polystyrene surfaces, a histidine tag (Hisx6) forpurification, the horseradish peroxidase (HRP) enzyme for chemiluminescencedetection, or the biotinylatable AviTag sequence for detection using a differentmethod, in multiple combinations.Results: We successfully expressed and purified anti-kappa NBs fused to a Hisx6-tag (κNB) and HRP–Hisx6-tag (κNB–HRP), with subsequent structural andfunctional characterization revealing high affinity and specificity for mouseimmunoglobulins. The κNB–kappa light chain domain complex was modeled,showing a fitted surface interaction of the CDR3 domain. The position of a glycanpresent in κNB CDR3 within the complex was modeled, predicting that glycanaddition would not affect the interaction surface. Accordingly, no functionaldifferences were observed in κNB after deglycosylation, indicating that highmannose glycan addition has not interfered with its binding capability.Glycosylated and deglycosylated κNBs fused to HRP were produced withretained HRP activity and proved to be functional as secondary antibodies.Discussion: Our results show the P. pastoris eukaryotic system’s versatility inproducing NBs and conjugated NBs with or without post-translationalmodifications that may be required for diverse biotechnological applications.
Fil: Orioli, Sofía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina
Fil: Santos, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina
Fil: Ibañez, Lorena Itatí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: D'alessio, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Materia
Nanobodies
Pichia pastoris
glycosylation
recombinant expression
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274703

id CONICETDig_bd82bc04fefb9e4c250a62a62fd5f079
oai_identifier_str oai:ri.conicet.gov.ar:11336/274703
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastorisOrioli, SofíaSantos, JavierIbañez, Lorena ItatíD'alessio, CeciliaNanobodiesPichia pastorisglycosylationrecombinant expressionhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Introduction: Nanobodies (NBs) are small antibody fragments derived fromcamelid heavy-chain antibodies, which represent the minimal functionaldomain capable of antigen recognition and binding. NBs are 10 times smallerthan conventional antibodies, exhibit a compact structure, and have high stability,making them ideal for recombinant production. The eukaryotic unicellularsystem Pichia pastoris provides multiple advantages for protein expression,including the ability to perform several eukaryotic post-translationalmodifications such as glycosylation.Methods: In this work, we engineered a modular plasmid sequence that, throughspecific restriction enzyme cuts and ligations, codes the expression of a secretedanti-mouse kappa chain NB fused with various accessory peptides in P. pastoris.This system enables the incorporation of a plastic binding sequence forimmobilization onto polystyrene surfaces, a histidine tag (Hisx6) forpurification, the horseradish peroxidase (HRP) enzyme for chemiluminescencedetection, or the biotinylatable AviTag sequence for detection using a differentmethod, in multiple combinations.Results: We successfully expressed and purified anti-kappa NBs fused to a Hisx6-tag (κNB) and HRP–Hisx6-tag (κNB–HRP), with subsequent structural andfunctional characterization revealing high affinity and specificity for mouseimmunoglobulins. The κNB–kappa light chain domain complex was modeled,showing a fitted surface interaction of the CDR3 domain. The position of a glycanpresent in κNB CDR3 within the complex was modeled, predicting that glycanaddition would not affect the interaction surface. Accordingly, no functionaldifferences were observed in κNB after deglycosylation, indicating that highmannose glycan addition has not interfered with its binding capability.Glycosylated and deglycosylated κNBs fused to HRP were produced withretained HRP activity and proved to be functional as secondary antibodies.Discussion: Our results show the P. pastoris eukaryotic system’s versatility inproducing NBs and conjugated NBs with or without post-translationalmodifications that may be required for diverse biotechnological applications.Fil: Orioli, Sofía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; ArgentinaFil: Santos, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; ArgentinaFil: Ibañez, Lorena Itatí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: D'alessio, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFrontiers Media2025-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274703Orioli, Sofía; Santos, Javier; Ibañez, Lorena Itatí; D'alessio, Cecilia; Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris; Frontiers Media; Frontiers in Bioengineering and Biotechnology; 13; 10-2025; 1-122296-4185CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fbioe.2025.1673481/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fbioe.2025.1673481info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:19:55Zoai:ri.conicet.gov.ar:11336/274703instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:19:56.074CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
title Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
spellingShingle Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
Orioli, Sofía
Nanobodies
Pichia pastoris
glycosylation
recombinant expression
title_short Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
title_full Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
title_fullStr Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
title_full_unstemmed Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
title_sort Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris
dc.creator.none.fl_str_mv Orioli, Sofía
Santos, Javier
Ibañez, Lorena Itatí
D'alessio, Cecilia
author Orioli, Sofía
author_facet Orioli, Sofía
Santos, Javier
Ibañez, Lorena Itatí
D'alessio, Cecilia
author_role author
author2 Santos, Javier
Ibañez, Lorena Itatí
D'alessio, Cecilia
author2_role author
author
author
dc.subject.none.fl_str_mv Nanobodies
Pichia pastoris
glycosylation
recombinant expression
topic Nanobodies
Pichia pastoris
glycosylation
recombinant expression
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Introduction: Nanobodies (NBs) are small antibody fragments derived fromcamelid heavy-chain antibodies, which represent the minimal functionaldomain capable of antigen recognition and binding. NBs are 10 times smallerthan conventional antibodies, exhibit a compact structure, and have high stability,making them ideal for recombinant production. The eukaryotic unicellularsystem Pichia pastoris provides multiple advantages for protein expression,including the ability to perform several eukaryotic post-translationalmodifications such as glycosylation.Methods: In this work, we engineered a modular plasmid sequence that, throughspecific restriction enzyme cuts and ligations, codes the expression of a secretedanti-mouse kappa chain NB fused with various accessory peptides in P. pastoris.This system enables the incorporation of a plastic binding sequence forimmobilization onto polystyrene surfaces, a histidine tag (Hisx6) forpurification, the horseradish peroxidase (HRP) enzyme for chemiluminescencedetection, or the biotinylatable AviTag sequence for detection using a differentmethod, in multiple combinations.Results: We successfully expressed and purified anti-kappa NBs fused to a Hisx6-tag (κNB) and HRP–Hisx6-tag (κNB–HRP), with subsequent structural andfunctional characterization revealing high affinity and specificity for mouseimmunoglobulins. The κNB–kappa light chain domain complex was modeled,showing a fitted surface interaction of the CDR3 domain. The position of a glycanpresent in κNB CDR3 within the complex was modeled, predicting that glycanaddition would not affect the interaction surface. Accordingly, no functionaldifferences were observed in κNB after deglycosylation, indicating that highmannose glycan addition has not interfered with its binding capability.Glycosylated and deglycosylated κNBs fused to HRP were produced withretained HRP activity and proved to be functional as secondary antibodies.Discussion: Our results show the P. pastoris eukaryotic system’s versatility inproducing NBs and conjugated NBs with or without post-translationalmodifications that may be required for diverse biotechnological applications.
Fil: Orioli, Sofía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina
Fil: Santos, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina
Fil: Ibañez, Lorena Itatí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: D'alessio, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
description Introduction: Nanobodies (NBs) are small antibody fragments derived fromcamelid heavy-chain antibodies, which represent the minimal functionaldomain capable of antigen recognition and binding. NBs are 10 times smallerthan conventional antibodies, exhibit a compact structure, and have high stability,making them ideal for recombinant production. The eukaryotic unicellularsystem Pichia pastoris provides multiple advantages for protein expression,including the ability to perform several eukaryotic post-translationalmodifications such as glycosylation.Methods: In this work, we engineered a modular plasmid sequence that, throughspecific restriction enzyme cuts and ligations, codes the expression of a secretedanti-mouse kappa chain NB fused with various accessory peptides in P. pastoris.This system enables the incorporation of a plastic binding sequence forimmobilization onto polystyrene surfaces, a histidine tag (Hisx6) forpurification, the horseradish peroxidase (HRP) enzyme for chemiluminescencedetection, or the biotinylatable AviTag sequence for detection using a differentmethod, in multiple combinations.Results: We successfully expressed and purified anti-kappa NBs fused to a Hisx6-tag (κNB) and HRP–Hisx6-tag (κNB–HRP), with subsequent structural andfunctional characterization revealing high affinity and specificity for mouseimmunoglobulins. The κNB–kappa light chain domain complex was modeled,showing a fitted surface interaction of the CDR3 domain. The position of a glycanpresent in κNB CDR3 within the complex was modeled, predicting that glycanaddition would not affect the interaction surface. Accordingly, no functionaldifferences were observed in κNB after deglycosylation, indicating that highmannose glycan addition has not interfered with its binding capability.Glycosylated and deglycosylated κNBs fused to HRP were produced withretained HRP activity and proved to be functional as secondary antibodies.Discussion: Our results show the P. pastoris eukaryotic system’s versatility inproducing NBs and conjugated NBs with or without post-translationalmodifications that may be required for diverse biotechnological applications.
publishDate 2025
dc.date.none.fl_str_mv 2025-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274703
Orioli, Sofía; Santos, Javier; Ibañez, Lorena Itatí; D'alessio, Cecilia; Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris; Frontiers Media; Frontiers in Bioengineering and Biotechnology; 13; 10-2025; 1-12
2296-4185
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274703
identifier_str_mv Orioli, Sofía; Santos, Javier; Ibañez, Lorena Itatí; D'alessio, Cecilia; Production of high-affinity glycosylated anti-mouse conjugated nanobodies in Pichia pastoris; Frontiers Media; Frontiers in Bioengineering and Biotechnology; 13; 10-2025; 1-12
2296-4185
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fbioe.2025.1673481/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fbioe.2025.1673481
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847977793880588288
score 13.121305