Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling

Autores
Pont, Federico Manuel; Serra, Pablo; Osenda, Omar
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width.
Fil: Pont, Federico Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Serra, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
Stabilization
Resonance
Scaling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/279091

id CONICETDig_bd3de988b7153415821a724c64378bb3
oai_identifier_str oai:ri.conicet.gov.ar:11336/279091
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Real stabilization of resonance states employing two parameters: basis-set size and coordinate scalingPont, Federico ManuelSerra, PabloOsenda, OmarStabilizationResonanceScalinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width.Fil: Pont, Federico Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Serra, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaIOP Publishing2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/279091Pont, Federico Manuel; Serra, Pablo; Osenda, Omar; Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 44; 13; 7-2011; 1-100953-4075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0953-4075/44/13/135003info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-4075/44/13/135003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:56:05Zoai:ri.conicet.gov.ar:11336/279091instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:56:05.838CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
title Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
spellingShingle Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
Pont, Federico Manuel
Stabilization
Resonance
Scaling
title_short Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
title_full Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
title_fullStr Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
title_full_unstemmed Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
title_sort Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
dc.creator.none.fl_str_mv Pont, Federico Manuel
Serra, Pablo
Osenda, Omar
author Pont, Federico Manuel
author_facet Pont, Federico Manuel
Serra, Pablo
Osenda, Omar
author_role author
author2 Serra, Pablo
Osenda, Omar
author2_role author
author
dc.subject.none.fl_str_mv Stabilization
Resonance
Scaling
topic Stabilization
Resonance
Scaling
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width.
Fil: Pont, Federico Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Serra, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/279091
Pont, Federico Manuel; Serra, Pablo; Osenda, Omar; Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 44; 13; 7-2011; 1-10
0953-4075
CONICET Digital
CONICET
url http://hdl.handle.net/11336/279091
identifier_str_mv Pont, Federico Manuel; Serra, Pablo; Osenda, Omar; Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 44; 13; 7-2011; 1-10
0953-4075
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0953-4075/44/13/135003
info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-4075/44/13/135003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854322192210198528
score 13.113929