Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling
- Autores
- Pont, Federico Manuel; Serra, Pablo; Osenda, Omar
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width.
Fil: Pont, Federico Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Serra, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Stabilization
Resonance
Scaling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/279091
Ver los metadatos del registro completo
| id |
CONICETDig_bd3de988b7153415821a724c64378bb3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/279091 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scalingPont, Federico ManuelSerra, PabloOsenda, OmarStabilizationResonanceScalinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width.Fil: Pont, Federico Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Serra, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaIOP Publishing2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/279091Pont, Federico Manuel; Serra, Pablo; Osenda, Omar; Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 44; 13; 7-2011; 1-100953-4075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0953-4075/44/13/135003info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-4075/44/13/135003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:56:05Zoai:ri.conicet.gov.ar:11336/279091instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:56:05.838CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling |
| title |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling |
| spellingShingle |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling Pont, Federico Manuel Stabilization Resonance Scaling |
| title_short |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling |
| title_full |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling |
| title_fullStr |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling |
| title_full_unstemmed |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling |
| title_sort |
Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling |
| dc.creator.none.fl_str_mv |
Pont, Federico Manuel Serra, Pablo Osenda, Omar |
| author |
Pont, Federico Manuel |
| author_facet |
Pont, Federico Manuel Serra, Pablo Osenda, Omar |
| author_role |
author |
| author2 |
Serra, Pablo Osenda, Omar |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Stabilization Resonance Scaling |
| topic |
Stabilization Resonance Scaling |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width. Fil: Pont, Federico Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Serra, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
| description |
The resonance states of one- and two-particle Hamiltonians are studied using variational expansions with real basis-set functions. The resonance energies, Er, and widths, , are calculated using the density of states and an L2 golden rule-like formula. We present a recipe to select adequately some solutions of the variational problem. The set of approximate energies obtained shows a very regular behaviour with the basis-set size, N. Indeed, these particular variational eigenvalues show a quite simple scaling behaviour and convergence when N → ∞. Following the same prescription to choose particular solutions of the variational problem we obtain a set of approximate widths. Using the scaling function that characterizes the behaviour of the approximate energies as a guide, it is possible to find a very good approximation to the actual value of the resonance width.igharrow infty$. Following the same prescription tochoose particular solutions of the variational problem we obtain a set of approximatewidths. Using the scaling function that characterizes the behaviour of theapproximate energies as a guide, it is possible to find a very good approximationto the actual value of the resonance width. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/279091 Pont, Federico Manuel; Serra, Pablo; Osenda, Omar; Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 44; 13; 7-2011; 1-10 0953-4075 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/279091 |
| identifier_str_mv |
Pont, Federico Manuel; Serra, Pablo; Osenda, Omar; Real stabilization of resonance states employing two parameters: basis-set size and coordinate scaling; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 44; 13; 7-2011; 1-10 0953-4075 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0953-4075/44/13/135003 info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-4075/44/13/135003 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
IOP Publishing |
| publisher.none.fl_str_mv |
IOP Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1854322192210198528 |
| score |
13.113929 |