A dynamic analysis of tuberculosis dissemination to improve control and surveillance
- Autores
- Zorzenon dos Santos, Rita M.; Amador, Ana; de Souza, Wayner V.; de Albuquerque, Maria Fatima P. M.; Ponce Dawson, Silvina Martha; Ruffino-Netto, Antonio; Zárate-Bladés, Carlos R.; Silva, Celio L.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes. © 2010 Zorzenon dos Santos et al.
Fil: Zorzenon dos Santos, Rita M.. Universidade Federal de Pernambuco; Brasil
Fil: Amador, Ana. Universidade Federal de Pernambuco; Brasil. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: de Souza, Wayner V.. Fundación Oswaldo Cruz; Brasil
Fil: de Albuquerque, Maria Fatima P. M.. Universidade Federal de Pernambuco; Brasil. Fundación Oswaldo Cruz; Brasil
Fil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Ruffino-Netto, Antonio. Universidade de Sao Paulo; Brasil
Fil: Zárate-Bladés, Carlos R.. Universidade de Sao Paulo; Brasil
Fil: Silva, Celio L.. Universidade de Sao Paulo; Brasil - Materia
-
Tuberculosis
Analisis espacio-temporal
Diseminacion de enfermedades contagiosas
Percolacion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78303
Ver los metadatos del registro completo
id |
CONICETDig_bcd815a725640dce2a46ff62bedba499 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78303 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A dynamic analysis of tuberculosis dissemination to improve control and surveillanceZorzenon dos Santos, Rita M.Amador, Anade Souza, Wayner V.de Albuquerque, Maria Fatima P. M.Ponce Dawson, Silvina MarthaRuffino-Netto, AntonioZárate-Bladés, Carlos R.Silva, Celio L.TuberculosisAnalisis espacio-temporalDiseminacion de enfermedades contagiosasPercolacionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes. © 2010 Zorzenon dos Santos et al.Fil: Zorzenon dos Santos, Rita M.. Universidade Federal de Pernambuco; BrasilFil: Amador, Ana. Universidade Federal de Pernambuco; Brasil. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: de Souza, Wayner V.. Fundación Oswaldo Cruz; BrasilFil: de Albuquerque, Maria Fatima P. M.. Universidade Federal de Pernambuco; Brasil. Fundación Oswaldo Cruz; BrasilFil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Ruffino-Netto, Antonio. Universidade de Sao Paulo; BrasilFil: Zárate-Bladés, Carlos R.. Universidade de Sao Paulo; BrasilFil: Silva, Celio L.. Universidade de Sao Paulo; BrasilPublic Library of Science2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78303Zorzenon dos Santos, Rita M.; Amador, Ana; de Souza, Wayner V.; de Albuquerque, Maria Fatima P. M.; Ponce Dawson, Silvina Martha; et al.; A dynamic analysis of tuberculosis dissemination to improve control and surveillance; Public Library of Science; Plos One; 5; 11; 11-2010; 141401-1414091932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0014140info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0014140info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:17Zoai:ri.conicet.gov.ar:11336/78303instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:17.591CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance |
title |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance |
spellingShingle |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance Zorzenon dos Santos, Rita M. Tuberculosis Analisis espacio-temporal Diseminacion de enfermedades contagiosas Percolacion |
title_short |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance |
title_full |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance |
title_fullStr |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance |
title_full_unstemmed |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance |
title_sort |
A dynamic analysis of tuberculosis dissemination to improve control and surveillance |
dc.creator.none.fl_str_mv |
Zorzenon dos Santos, Rita M. Amador, Ana de Souza, Wayner V. de Albuquerque, Maria Fatima P. M. Ponce Dawson, Silvina Martha Ruffino-Netto, Antonio Zárate-Bladés, Carlos R. Silva, Celio L. |
author |
Zorzenon dos Santos, Rita M. |
author_facet |
Zorzenon dos Santos, Rita M. Amador, Ana de Souza, Wayner V. de Albuquerque, Maria Fatima P. M. Ponce Dawson, Silvina Martha Ruffino-Netto, Antonio Zárate-Bladés, Carlos R. Silva, Celio L. |
author_role |
author |
author2 |
Amador, Ana de Souza, Wayner V. de Albuquerque, Maria Fatima P. M. Ponce Dawson, Silvina Martha Ruffino-Netto, Antonio Zárate-Bladés, Carlos R. Silva, Celio L. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Tuberculosis Analisis espacio-temporal Diseminacion de enfermedades contagiosas Percolacion |
topic |
Tuberculosis Analisis espacio-temporal Diseminacion de enfermedades contagiosas Percolacion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes. © 2010 Zorzenon dos Santos et al. Fil: Zorzenon dos Santos, Rita M.. Universidade Federal de Pernambuco; Brasil Fil: Amador, Ana. Universidade Federal de Pernambuco; Brasil. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: de Souza, Wayner V.. Fundación Oswaldo Cruz; Brasil Fil: de Albuquerque, Maria Fatima P. M.. Universidade Federal de Pernambuco; Brasil. Fundación Oswaldo Cruz; Brasil Fil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Ruffino-Netto, Antonio. Universidade de Sao Paulo; Brasil Fil: Zárate-Bladés, Carlos R.. Universidade de Sao Paulo; Brasil Fil: Silva, Celio L.. Universidade de Sao Paulo; Brasil |
description |
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes. © 2010 Zorzenon dos Santos et al. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78303 Zorzenon dos Santos, Rita M.; Amador, Ana; de Souza, Wayner V.; de Albuquerque, Maria Fatima P. M.; Ponce Dawson, Silvina Martha; et al.; A dynamic analysis of tuberculosis dissemination to improve control and surveillance; Public Library of Science; Plos One; 5; 11; 11-2010; 141401-141409 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78303 |
identifier_str_mv |
Zorzenon dos Santos, Rita M.; Amador, Ana; de Souza, Wayner V.; de Albuquerque, Maria Fatima P. M.; Ponce Dawson, Silvina Martha; et al.; A dynamic analysis of tuberculosis dissemination to improve control and surveillance; Public Library of Science; Plos One; 5; 11; 11-2010; 141401-141409 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0014140 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0014140 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614239637995520 |
score |
13.070432 |