A DFT-Based Running Time Prediction Algorithm for Web Queries
- Autores
- Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation.
Fil: Rojas, Oscar. Universidad de Santiago de Chile; Chile
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Marín, Mauricio. Universidad de Chile; Chile - Materia
-
DISCRETE FOURIER TRANSFORM
DISTRIBUTED QUERY RANKING ALGORITHM
QUERY SCHEDULING FOR MULTI-CORE PROCESSORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150245
Ver los metadatos del registro completo
| id |
CONICETDig_bc3a5b0ca9228fc2a40204f878386d2b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150245 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A DFT-Based Running Time Prediction Algorithm for Web QueriesRojas, OscarGil Costa, Graciela VerónicaMarín, MauricioDISCRETE FOURIER TRANSFORMDISTRIBUTED QUERY RANKING ALGORITHMQUERY SCHEDULING FOR MULTI-CORE PROCESSORShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation.Fil: Rojas, Oscar. Universidad de Santiago de Chile; ChileFil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Marín, Mauricio. Universidad de Chile; ChileMDPI2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150245Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio; A DFT-Based Running Time Prediction Algorithm for Web Queries; MDPI; Future Internet; 13; 8; 8-2021; 1-211999-5903CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.3390/fi13080204info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:04:55Zoai:ri.conicet.gov.ar:11336/150245instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:04:56.199CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A DFT-Based Running Time Prediction Algorithm for Web Queries |
| title |
A DFT-Based Running Time Prediction Algorithm for Web Queries |
| spellingShingle |
A DFT-Based Running Time Prediction Algorithm for Web Queries Rojas, Oscar DISCRETE FOURIER TRANSFORM DISTRIBUTED QUERY RANKING ALGORITHM QUERY SCHEDULING FOR MULTI-CORE PROCESSORS |
| title_short |
A DFT-Based Running Time Prediction Algorithm for Web Queries |
| title_full |
A DFT-Based Running Time Prediction Algorithm for Web Queries |
| title_fullStr |
A DFT-Based Running Time Prediction Algorithm for Web Queries |
| title_full_unstemmed |
A DFT-Based Running Time Prediction Algorithm for Web Queries |
| title_sort |
A DFT-Based Running Time Prediction Algorithm for Web Queries |
| dc.creator.none.fl_str_mv |
Rojas, Oscar Gil Costa, Graciela Verónica Marín, Mauricio |
| author |
Rojas, Oscar |
| author_facet |
Rojas, Oscar Gil Costa, Graciela Verónica Marín, Mauricio |
| author_role |
author |
| author2 |
Gil Costa, Graciela Verónica Marín, Mauricio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
DISCRETE FOURIER TRANSFORM DISTRIBUTED QUERY RANKING ALGORITHM QUERY SCHEDULING FOR MULTI-CORE PROCESSORS |
| topic |
DISCRETE FOURIER TRANSFORM DISTRIBUTED QUERY RANKING ALGORITHM QUERY SCHEDULING FOR MULTI-CORE PROCESSORS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation. Fil: Rojas, Oscar. Universidad de Santiago de Chile; Chile Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina Fil: Marín, Mauricio. Universidad de Chile; Chile |
| description |
Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150245 Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio; A DFT-Based Running Time Prediction Algorithm for Web Queries; MDPI; Future Internet; 13; 8; 8-2021; 1-21 1999-5903 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/150245 |
| identifier_str_mv |
Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio; A DFT-Based Running Time Prediction Algorithm for Web Queries; MDPI; Future Internet; 13; 8; 8-2021; 1-21 1999-5903 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.3390/fi13080204 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781317572722688 |
| score |
12.982451 |