A DFT-Based Running Time Prediction Algorithm for Web Queries

Autores
Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation.
Fil: Rojas, Oscar. Universidad de Santiago de Chile; Chile
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Marín, Mauricio. Universidad de Chile; Chile
Materia
DISCRETE FOURIER TRANSFORM
DISTRIBUTED QUERY RANKING ALGORITHM
QUERY SCHEDULING FOR MULTI-CORE PROCESSORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/150245

id CONICETDig_bc3a5b0ca9228fc2a40204f878386d2b
oai_identifier_str oai:ri.conicet.gov.ar:11336/150245
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A DFT-Based Running Time Prediction Algorithm for Web QueriesRojas, OscarGil Costa, Graciela VerónicaMarín, MauricioDISCRETE FOURIER TRANSFORMDISTRIBUTED QUERY RANKING ALGORITHMQUERY SCHEDULING FOR MULTI-CORE PROCESSORShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation.Fil: Rojas, Oscar. Universidad de Santiago de Chile; ChileFil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Marín, Mauricio. Universidad de Chile; ChileMDPI2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150245Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio; A DFT-Based Running Time Prediction Algorithm for Web Queries; MDPI; Future Internet; 13; 8; 8-2021; 1-211999-5903CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.3390/fi13080204info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:04:55Zoai:ri.conicet.gov.ar:11336/150245instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:04:56.199CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A DFT-Based Running Time Prediction Algorithm for Web Queries
title A DFT-Based Running Time Prediction Algorithm for Web Queries
spellingShingle A DFT-Based Running Time Prediction Algorithm for Web Queries
Rojas, Oscar
DISCRETE FOURIER TRANSFORM
DISTRIBUTED QUERY RANKING ALGORITHM
QUERY SCHEDULING FOR MULTI-CORE PROCESSORS
title_short A DFT-Based Running Time Prediction Algorithm for Web Queries
title_full A DFT-Based Running Time Prediction Algorithm for Web Queries
title_fullStr A DFT-Based Running Time Prediction Algorithm for Web Queries
title_full_unstemmed A DFT-Based Running Time Prediction Algorithm for Web Queries
title_sort A DFT-Based Running Time Prediction Algorithm for Web Queries
dc.creator.none.fl_str_mv Rojas, Oscar
Gil Costa, Graciela Verónica
Marín, Mauricio
author Rojas, Oscar
author_facet Rojas, Oscar
Gil Costa, Graciela Verónica
Marín, Mauricio
author_role author
author2 Gil Costa, Graciela Verónica
Marín, Mauricio
author2_role author
author
dc.subject.none.fl_str_mv DISCRETE FOURIER TRANSFORM
DISTRIBUTED QUERY RANKING ALGORITHM
QUERY SCHEDULING FOR MULTI-CORE PROCESSORS
topic DISCRETE FOURIER TRANSFORM
DISTRIBUTED QUERY RANKING ALGORITHM
QUERY SCHEDULING FOR MULTI-CORE PROCESSORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation.
Fil: Rojas, Oscar. Universidad de Santiago de Chile; Chile
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Marín, Mauricio. Universidad de Chile; Chile
description Web search engines are built from components capable of processing large amounts of user queries per second in a distributed way. Among them, the index service computes the topk documents that best match each incoming query by means of a document ranking operation. To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND algorithms are used to avoid fully processing all of the documents related to a query during the ranking operation. Additionally, the index service distributes the ranking operations among clusters of processors wherein in each processor multi-threading is applied to speed up query solution. In this scenario, a query running time prediction algorithm has practical applications in the efficient assignment of processors and threads to incoming queries. We propose a prediction algorithm for the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve accurate prediction results while significantly reducing execution time and memory consumption as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier transform (DFT) to represent key features affecting query running time whereas the resulting vectors are used to train a feed-forward neural network with back-propagation.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/150245
Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio; A DFT-Based Running Time Prediction Algorithm for Web Queries; MDPI; Future Internet; 13; 8; 8-2021; 1-21
1999-5903
CONICET Digital
CONICET
url http://hdl.handle.net/11336/150245
identifier_str_mv Rojas, Oscar; Gil Costa, Graciela Verónica; Marín, Mauricio; A DFT-Based Running Time Prediction Algorithm for Web Queries; MDPI; Future Internet; 13; 8; 8-2021; 1-21
1999-5903
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.3390/fi13080204
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781317572722688
score 12.982451