Contribution of colloidal forces to the viscosity and stability of cloudy apple juice

Autores
Genovese, Diego Bautista; Lozano, Jorge Enrique
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cloudy apple juice (CAJ) was considered to be a dilute colloidal dispersion of electrically charged, hydrophilic particles in an electrolyte solution (serum). Experimental data of relative (CAJ/serum) viscosity as a function of particle volume fraction, ηr(φ{symbol}), was modeled as the sum of a 'hard-sphere' contribution ( ηr hs ) plus a 'colloidal forces' contribution ( ηr cf ). Theoretical values of ηr hs (φ{symbol}) were obtained with Einstein's equation for dilute suspensions of non-interacting, rigid spheres. Semi-empirical values of ( ηr cf ) were found to be proportional to φ{symbol}1.22, lower than the theoretical φ{symbol}2. The difference was attributed to the effect of the energy barrier or activation energy between pairs of particles (UMax). The value of UMax at each φ{symbol} was obtained from the maximum of total interaction potential curves as function of inter-particle distance, U(x). In its turn, U(x) was modeled with the extended DLVO theory as the balance between attractive Van der Waals, repulsive electrostatic, and repulsive hydration energies. The term UMax was found to be a function of φ{symbol} and the hydration pressure constant (P0), which was unknown for CAJs particles. This function was introduced in an empirical model proposed in this work, ηr cf = α ( UMax / kB T ) φ{symbol}, and correlated with semi-empirical values, giving α=0.483 and P0=2.45×106 N m-2. According to this result, hydration forces (even reduced by hydrophobic interactions between pectin molecules) played the main role in the stability of CAJ particles.
Fil: Genovese, Diego Bautista. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Lozano, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Materia
Apple Juice
Colloidal Forces
Rheology
Turbidity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79068

id CONICETDig_bb05abcceda8dbe4fe5969ff6be30f85
oai_identifier_str oai:ri.conicet.gov.ar:11336/79068
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Contribution of colloidal forces to the viscosity and stability of cloudy apple juiceGenovese, Diego BautistaLozano, Jorge EnriqueApple JuiceColloidal ForcesRheologyTurbidityhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Cloudy apple juice (CAJ) was considered to be a dilute colloidal dispersion of electrically charged, hydrophilic particles in an electrolyte solution (serum). Experimental data of relative (CAJ/serum) viscosity as a function of particle volume fraction, ηr(φ{symbol}), was modeled as the sum of a 'hard-sphere' contribution ( ηr hs ) plus a 'colloidal forces' contribution ( ηr cf ). Theoretical values of ηr hs (φ{symbol}) were obtained with Einstein's equation for dilute suspensions of non-interacting, rigid spheres. Semi-empirical values of ( ηr cf ) were found to be proportional to φ{symbol}1.22, lower than the theoretical φ{symbol}2. The difference was attributed to the effect of the energy barrier or activation energy between pairs of particles (UMax). The value of UMax at each φ{symbol} was obtained from the maximum of total interaction potential curves as function of inter-particle distance, U(x). In its turn, U(x) was modeled with the extended DLVO theory as the balance between attractive Van der Waals, repulsive electrostatic, and repulsive hydration energies. The term UMax was found to be a function of φ{symbol} and the hydration pressure constant (P0), which was unknown for CAJs particles. This function was introduced in an empirical model proposed in this work, ηr cf = α ( UMax / kB T ) φ{symbol}, and correlated with semi-empirical values, giving α=0.483 and P0=2.45×106 N m-2. According to this result, hydration forces (even reduced by hydrophobic interactions between pectin molecules) played the main role in the stability of CAJ particles.Fil: Genovese, Diego Bautista. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Lozano, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier2006-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79068Genovese, Diego Bautista; Lozano, Jorge Enrique; Contribution of colloidal forces to the viscosity and stability of cloudy apple juice; Elsevier; Food Hydrocolloids; 20; 6; 8-2006; 767-7730268-005XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0268005X05001529info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodhyd.2005.07.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:27Zoai:ri.conicet.gov.ar:11336/79068instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:28.039CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
title Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
spellingShingle Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
Genovese, Diego Bautista
Apple Juice
Colloidal Forces
Rheology
Turbidity
title_short Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
title_full Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
title_fullStr Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
title_full_unstemmed Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
title_sort Contribution of colloidal forces to the viscosity and stability of cloudy apple juice
dc.creator.none.fl_str_mv Genovese, Diego Bautista
Lozano, Jorge Enrique
author Genovese, Diego Bautista
author_facet Genovese, Diego Bautista
Lozano, Jorge Enrique
author_role author
author2 Lozano, Jorge Enrique
author2_role author
dc.subject.none.fl_str_mv Apple Juice
Colloidal Forces
Rheology
Turbidity
topic Apple Juice
Colloidal Forces
Rheology
Turbidity
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Cloudy apple juice (CAJ) was considered to be a dilute colloidal dispersion of electrically charged, hydrophilic particles in an electrolyte solution (serum). Experimental data of relative (CAJ/serum) viscosity as a function of particle volume fraction, ηr(φ{symbol}), was modeled as the sum of a 'hard-sphere' contribution ( ηr hs ) plus a 'colloidal forces' contribution ( ηr cf ). Theoretical values of ηr hs (φ{symbol}) were obtained with Einstein's equation for dilute suspensions of non-interacting, rigid spheres. Semi-empirical values of ( ηr cf ) were found to be proportional to φ{symbol}1.22, lower than the theoretical φ{symbol}2. The difference was attributed to the effect of the energy barrier or activation energy between pairs of particles (UMax). The value of UMax at each φ{symbol} was obtained from the maximum of total interaction potential curves as function of inter-particle distance, U(x). In its turn, U(x) was modeled with the extended DLVO theory as the balance between attractive Van der Waals, repulsive electrostatic, and repulsive hydration energies. The term UMax was found to be a function of φ{symbol} and the hydration pressure constant (P0), which was unknown for CAJs particles. This function was introduced in an empirical model proposed in this work, ηr cf = α ( UMax / kB T ) φ{symbol}, and correlated with semi-empirical values, giving α=0.483 and P0=2.45×106 N m-2. According to this result, hydration forces (even reduced by hydrophobic interactions between pectin molecules) played the main role in the stability of CAJ particles.
Fil: Genovese, Diego Bautista. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Lozano, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description Cloudy apple juice (CAJ) was considered to be a dilute colloidal dispersion of electrically charged, hydrophilic particles in an electrolyte solution (serum). Experimental data of relative (CAJ/serum) viscosity as a function of particle volume fraction, ηr(φ{symbol}), was modeled as the sum of a 'hard-sphere' contribution ( ηr hs ) plus a 'colloidal forces' contribution ( ηr cf ). Theoretical values of ηr hs (φ{symbol}) were obtained with Einstein's equation for dilute suspensions of non-interacting, rigid spheres. Semi-empirical values of ( ηr cf ) were found to be proportional to φ{symbol}1.22, lower than the theoretical φ{symbol}2. The difference was attributed to the effect of the energy barrier or activation energy between pairs of particles (UMax). The value of UMax at each φ{symbol} was obtained from the maximum of total interaction potential curves as function of inter-particle distance, U(x). In its turn, U(x) was modeled with the extended DLVO theory as the balance between attractive Van der Waals, repulsive electrostatic, and repulsive hydration energies. The term UMax was found to be a function of φ{symbol} and the hydration pressure constant (P0), which was unknown for CAJs particles. This function was introduced in an empirical model proposed in this work, ηr cf = α ( UMax / kB T ) φ{symbol}, and correlated with semi-empirical values, giving α=0.483 and P0=2.45×106 N m-2. According to this result, hydration forces (even reduced by hydrophobic interactions between pectin molecules) played the main role in the stability of CAJ particles.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79068
Genovese, Diego Bautista; Lozano, Jorge Enrique; Contribution of colloidal forces to the viscosity and stability of cloudy apple juice; Elsevier; Food Hydrocolloids; 20; 6; 8-2006; 767-773
0268-005X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79068
identifier_str_mv Genovese, Diego Bautista; Lozano, Jorge Enrique; Contribution of colloidal forces to the viscosity and stability of cloudy apple juice; Elsevier; Food Hydrocolloids; 20; 6; 8-2006; 767-773
0268-005X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0268005X05001529
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodhyd.2005.07.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980711011713024
score 12.993085