One-dimensional diffusion: Validity of various expressions for jump rates

Autores
Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion.
Fil: Manzi, Sergio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ranzuglia, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Materia
DIFFUSION
LATTICE GAS MODEL
DIFFUSION COEFFICIENT
JUMP RATES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/117263

id CONICETDig_ba58b9c461d5ce75d4041759c54121b1
oai_identifier_str oai:ri.conicet.gov.ar:11336/117263
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling One-dimensional diffusion: Validity of various expressions for jump ratesManzi, Sergio JavierRanzuglia, Gabriela AliciaPereyra, Victor DanielDIFFUSIONLATTICE GAS MODELDIFFUSION COEFFICIENTJUMP RATEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion.Fil: Manzi, Sergio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ranzuglia, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117263Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel; One-dimensional diffusion: Validity of various expressions for jump rates; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 6; 12-2009; 621041-6210441539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.062104info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.80.062104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:33Zoai:ri.conicet.gov.ar:11336/117263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:33.575CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv One-dimensional diffusion: Validity of various expressions for jump rates
title One-dimensional diffusion: Validity of various expressions for jump rates
spellingShingle One-dimensional diffusion: Validity of various expressions for jump rates
Manzi, Sergio Javier
DIFFUSION
LATTICE GAS MODEL
DIFFUSION COEFFICIENT
JUMP RATES
title_short One-dimensional diffusion: Validity of various expressions for jump rates
title_full One-dimensional diffusion: Validity of various expressions for jump rates
title_fullStr One-dimensional diffusion: Validity of various expressions for jump rates
title_full_unstemmed One-dimensional diffusion: Validity of various expressions for jump rates
title_sort One-dimensional diffusion: Validity of various expressions for jump rates
dc.creator.none.fl_str_mv Manzi, Sergio Javier
Ranzuglia, Gabriela Alicia
Pereyra, Victor Daniel
author Manzi, Sergio Javier
author_facet Manzi, Sergio Javier
Ranzuglia, Gabriela Alicia
Pereyra, Victor Daniel
author_role author
author2 Ranzuglia, Gabriela Alicia
Pereyra, Victor Daniel
author2_role author
author
dc.subject.none.fl_str_mv DIFFUSION
LATTICE GAS MODEL
DIFFUSION COEFFICIENT
JUMP RATES
topic DIFFUSION
LATTICE GAS MODEL
DIFFUSION COEFFICIENT
JUMP RATES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion.
Fil: Manzi, Sergio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ranzuglia, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
description The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/117263
Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel; One-dimensional diffusion: Validity of various expressions for jump rates; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 6; 12-2009; 621041-621044
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/117263
identifier_str_mv Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel; One-dimensional diffusion: Validity of various expressions for jump rates; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 6; 12-2009; 621041-621044
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.062104
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.80.062104
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613853211525120
score 13.070432