One-dimensional diffusion: Validity of various expressions for jump rates
- Autores
- Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion.
Fil: Manzi, Sergio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ranzuglia, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
DIFFUSION
LATTICE GAS MODEL
DIFFUSION COEFFICIENT
JUMP RATES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117263
Ver los metadatos del registro completo
id |
CONICETDig_ba58b9c461d5ce75d4041759c54121b1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117263 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
One-dimensional diffusion: Validity of various expressions for jump ratesManzi, Sergio JavierRanzuglia, Gabriela AliciaPereyra, Victor DanielDIFFUSIONLATTICE GAS MODELDIFFUSION COEFFICIENTJUMP RATEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion.Fil: Manzi, Sergio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ranzuglia, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117263Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel; One-dimensional diffusion: Validity of various expressions for jump rates; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 6; 12-2009; 621041-6210441539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.062104info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.80.062104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:33Zoai:ri.conicet.gov.ar:11336/117263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:33.575CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
One-dimensional diffusion: Validity of various expressions for jump rates |
title |
One-dimensional diffusion: Validity of various expressions for jump rates |
spellingShingle |
One-dimensional diffusion: Validity of various expressions for jump rates Manzi, Sergio Javier DIFFUSION LATTICE GAS MODEL DIFFUSION COEFFICIENT JUMP RATES |
title_short |
One-dimensional diffusion: Validity of various expressions for jump rates |
title_full |
One-dimensional diffusion: Validity of various expressions for jump rates |
title_fullStr |
One-dimensional diffusion: Validity of various expressions for jump rates |
title_full_unstemmed |
One-dimensional diffusion: Validity of various expressions for jump rates |
title_sort |
One-dimensional diffusion: Validity of various expressions for jump rates |
dc.creator.none.fl_str_mv |
Manzi, Sergio Javier Ranzuglia, Gabriela Alicia Pereyra, Victor Daniel |
author |
Manzi, Sergio Javier |
author_facet |
Manzi, Sergio Javier Ranzuglia, Gabriela Alicia Pereyra, Victor Daniel |
author_role |
author |
author2 |
Ranzuglia, Gabriela Alicia Pereyra, Victor Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DIFFUSION LATTICE GAS MODEL DIFFUSION COEFFICIENT JUMP RATES |
topic |
DIFFUSION LATTICE GAS MODEL DIFFUSION COEFFICIENT JUMP RATES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion. Fil: Manzi, Sergio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ranzuglia, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
The coverage dependence of the one-dimensional collective diffusion coefficient is analyzed by using the gradient expansion of the local density. The transition probabilities are written as an expansion of the probabilities of the occupation configurations. Since the detail balance principle determines only a part of the diffusion terms in the expansion, different functional relations are proposed for these terms. The diffusion coefficient is obtained for various choices of these relations. However, some of them seem to be not physically sound and the diffusion coefficient does not behave properly. The range of validity of various expressions for the jump rates is determined and phase diagrams are shown. Besides that, it is shown that the transition state theory guarantees physically suitable behavior of the coefficient of one-dimensional diffusion. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117263 Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel; One-dimensional diffusion: Validity of various expressions for jump rates; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 6; 12-2009; 621041-621044 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117263 |
identifier_str_mv |
Manzi, Sergio Javier; Ranzuglia, Gabriela Alicia; Pereyra, Victor Daniel; One-dimensional diffusion: Validity of various expressions for jump rates; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 6; 12-2009; 621041-621044 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.062104 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.80.062104 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613853211525120 |
score |
13.070432 |