Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties

Autores
Martinez, María Victoria; Bongiovanni Abel, Silvestre Manuel; Rivero, Rebeca Edith; Miras, Maria Cristina; Rivarola, Claudia Rosana; Barbero, César Alfredo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanocomposites are made by loading a conductive polymer (polyaniline, PANI) inside a thermosensitive hydrogel matrix (poly(N-isopropylacrylamide)-co-(2-acrylamido-2-methylpropane sulfonic acid), HG). The composites were obtained by two loading methods: i) in-situ polymerization of aniline inside the hydrogel matrix (ISP) and ii) by swelling of hydrogel in a true solution (SIS) of PANI (base) in N-methylpyrrolidone. Even though the composites have similar chemical composition, scanning electronic microscopy (SEM) shows different morphologies for each material obtained. ISP produces a material with segregated nanodomains of PANI inside HG, building a true nanocomposite (NC). On the other hand, SIS seems to create a semi-interpenetrated (semi-IPN) network of PANI inside the HG. The swelling capacity and volume phase transition temperature (VPTT) of composites are also affected by the loading methods. The segregated nanodomains of PANI in the NC do not affect the thermosensitivity of HG, while the PANI chains are directly interacting with the HG chains in the semi-IPN, affecting the VPTT. The swelling capacity of NC is of %Sweq = 6500 while the semi-IPN is of %Sweq = 8600. Both of them are lower than the one of pure HG (%Sweq = 11,000). The elastic module of both materials is higher than HG. The states of water analyzed by DSC show a high hydrophobic character inside the composite. The amount of water interacting with HG chains decreases with the presence of PANI. Both composites show electronic conductivity which changes when pressure is applied on them. However the NC shows a larger gauge factor. Such property could be applied in a pressure sensor. Additionally, the thermal sensitivity of the matrix is coupled with the electronic conductivity of PANI, allowing to build an electric switch controlled by the temperature.
Fil: Martinez, María Victoria. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bongiovanni Abel, Silvestre Manuel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rivero, Rebeca Edith. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Rivarola, Claudia Rosana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Elastic Module
Hydrogel
Polyaniline
Polymeric Nanocomposite
Semi-Interpenetration
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/69630

id CONICETDig_1471344cdba8f299df45cfa539522dc9
oai_identifier_str oai:ri.conicet.gov.ar:11336/69630
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the propertiesMartinez, María VictoriaBongiovanni Abel, Silvestre ManuelRivero, Rebeca EdithMiras, Maria CristinaRivarola, Claudia RosanaBarbero, César AlfredoElastic ModuleHydrogelPolyanilinePolymeric NanocompositeSemi-Interpenetrationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Nanocomposites are made by loading a conductive polymer (polyaniline, PANI) inside a thermosensitive hydrogel matrix (poly(N-isopropylacrylamide)-co-(2-acrylamido-2-methylpropane sulfonic acid), HG). The composites were obtained by two loading methods: i) in-situ polymerization of aniline inside the hydrogel matrix (ISP) and ii) by swelling of hydrogel in a true solution (SIS) of PANI (base) in N-methylpyrrolidone. Even though the composites have similar chemical composition, scanning electronic microscopy (SEM) shows different morphologies for each material obtained. ISP produces a material with segregated nanodomains of PANI inside HG, building a true nanocomposite (NC). On the other hand, SIS seems to create a semi-interpenetrated (semi-IPN) network of PANI inside the HG. The swelling capacity and volume phase transition temperature (VPTT) of composites are also affected by the loading methods. The segregated nanodomains of PANI in the NC do not affect the thermosensitivity of HG, while the PANI chains are directly interacting with the HG chains in the semi-IPN, affecting the VPTT. The swelling capacity of NC is of %Sweq = 6500 while the semi-IPN is of %Sweq = 8600. Both of them are lower than the one of pure HG (%Sweq = 11,000). The elastic module of both materials is higher than HG. The states of water analyzed by DSC show a high hydrophobic character inside the composite. The amount of water interacting with HG chains decreases with the presence of PANI. Both composites show electronic conductivity which changes when pressure is applied on them. However the NC shows a larger gauge factor. Such property could be applied in a pressure sensor. Additionally, the thermal sensitivity of the matrix is coupled with the electronic conductivity of PANI, allowing to build an electric switch controlled by the temperature.Fil: Martinez, María Victoria. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bongiovanni Abel, Silvestre Manuel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rivero, Rebeca Edith. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Rivarola, Claudia Rosana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69630Martinez, María Victoria; Bongiovanni Abel, Silvestre Manuel; Rivero, Rebeca Edith; Miras, Maria Cristina; Rivarola, Claudia Rosana; et al.; Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties; Elsevier; Polymer; 78; 11-2015; 94-1030032-3861CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.polymer.2015.09.054info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0032386115302597info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:40Zoai:ri.conicet.gov.ar:11336/69630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:41.277CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
title Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
spellingShingle Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
Martinez, María Victoria
Elastic Module
Hydrogel
Polyaniline
Polymeric Nanocomposite
Semi-Interpenetration
title_short Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
title_full Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
title_fullStr Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
title_full_unstemmed Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
title_sort Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties
dc.creator.none.fl_str_mv Martinez, María Victoria
Bongiovanni Abel, Silvestre Manuel
Rivero, Rebeca Edith
Miras, Maria Cristina
Rivarola, Claudia Rosana
Barbero, César Alfredo
author Martinez, María Victoria
author_facet Martinez, María Victoria
Bongiovanni Abel, Silvestre Manuel
Rivero, Rebeca Edith
Miras, Maria Cristina
Rivarola, Claudia Rosana
Barbero, César Alfredo
author_role author
author2 Bongiovanni Abel, Silvestre Manuel
Rivero, Rebeca Edith
Miras, Maria Cristina
Rivarola, Claudia Rosana
Barbero, César Alfredo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Elastic Module
Hydrogel
Polyaniline
Polymeric Nanocomposite
Semi-Interpenetration
topic Elastic Module
Hydrogel
Polyaniline
Polymeric Nanocomposite
Semi-Interpenetration
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nanocomposites are made by loading a conductive polymer (polyaniline, PANI) inside a thermosensitive hydrogel matrix (poly(N-isopropylacrylamide)-co-(2-acrylamido-2-methylpropane sulfonic acid), HG). The composites were obtained by two loading methods: i) in-situ polymerization of aniline inside the hydrogel matrix (ISP) and ii) by swelling of hydrogel in a true solution (SIS) of PANI (base) in N-methylpyrrolidone. Even though the composites have similar chemical composition, scanning electronic microscopy (SEM) shows different morphologies for each material obtained. ISP produces a material with segregated nanodomains of PANI inside HG, building a true nanocomposite (NC). On the other hand, SIS seems to create a semi-interpenetrated (semi-IPN) network of PANI inside the HG. The swelling capacity and volume phase transition temperature (VPTT) of composites are also affected by the loading methods. The segregated nanodomains of PANI in the NC do not affect the thermosensitivity of HG, while the PANI chains are directly interacting with the HG chains in the semi-IPN, affecting the VPTT. The swelling capacity of NC is of %Sweq = 6500 while the semi-IPN is of %Sweq = 8600. Both of them are lower than the one of pure HG (%Sweq = 11,000). The elastic module of both materials is higher than HG. The states of water analyzed by DSC show a high hydrophobic character inside the composite. The amount of water interacting with HG chains decreases with the presence of PANI. Both composites show electronic conductivity which changes when pressure is applied on them. However the NC shows a larger gauge factor. Such property could be applied in a pressure sensor. Additionally, the thermal sensitivity of the matrix is coupled with the electronic conductivity of PANI, allowing to build an electric switch controlled by the temperature.
Fil: Martinez, María Victoria. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bongiovanni Abel, Silvestre Manuel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rivero, Rebeca Edith. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miras, Maria Cristina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Rivarola, Claudia Rosana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Nanocomposites are made by loading a conductive polymer (polyaniline, PANI) inside a thermosensitive hydrogel matrix (poly(N-isopropylacrylamide)-co-(2-acrylamido-2-methylpropane sulfonic acid), HG). The composites were obtained by two loading methods: i) in-situ polymerization of aniline inside the hydrogel matrix (ISP) and ii) by swelling of hydrogel in a true solution (SIS) of PANI (base) in N-methylpyrrolidone. Even though the composites have similar chemical composition, scanning electronic microscopy (SEM) shows different morphologies for each material obtained. ISP produces a material with segregated nanodomains of PANI inside HG, building a true nanocomposite (NC). On the other hand, SIS seems to create a semi-interpenetrated (semi-IPN) network of PANI inside the HG. The swelling capacity and volume phase transition temperature (VPTT) of composites are also affected by the loading methods. The segregated nanodomains of PANI in the NC do not affect the thermosensitivity of HG, while the PANI chains are directly interacting with the HG chains in the semi-IPN, affecting the VPTT. The swelling capacity of NC is of %Sweq = 6500 while the semi-IPN is of %Sweq = 8600. Both of them are lower than the one of pure HG (%Sweq = 11,000). The elastic module of both materials is higher than HG. The states of water analyzed by DSC show a high hydrophobic character inside the composite. The amount of water interacting with HG chains decreases with the presence of PANI. Both composites show electronic conductivity which changes when pressure is applied on them. However the NC shows a larger gauge factor. Such property could be applied in a pressure sensor. Additionally, the thermal sensitivity of the matrix is coupled with the electronic conductivity of PANI, allowing to build an electric switch controlled by the temperature.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/69630
Martinez, María Victoria; Bongiovanni Abel, Silvestre Manuel; Rivero, Rebeca Edith; Miras, Maria Cristina; Rivarola, Claudia Rosana; et al.; Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties; Elsevier; Polymer; 78; 11-2015; 94-103
0032-3861
CONICET Digital
CONICET
url http://hdl.handle.net/11336/69630
identifier_str_mv Martinez, María Victoria; Bongiovanni Abel, Silvestre Manuel; Rivero, Rebeca Edith; Miras, Maria Cristina; Rivarola, Claudia Rosana; et al.; Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties; Elsevier; Polymer; 78; 11-2015; 94-103
0032-3861
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.polymer.2015.09.054
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0032386115302597
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614410488774656
score 13.070432