Direct observation of coherent energy transfer in nonlinear micromechanical oscillators

Autores
Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
Fil: Chen, Changyao. Argonne National Laboratory; Estados Unidos
Fil: Zanette, Damian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Czaplewski, David A.. Argonne National Laboratory; Estados Unidos
Fil: Shaw, Steven. Florida Institute of Technology; Estados Unidos
Fil: López, Daniel. Argonne National Laboratory; Estados Unidos
Materia
Energy Transfer
Micromechanical Oscillators
Synchronization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/75898

id CONICETDig_b92f32c510ec73e791c19be455972382
oai_identifier_str oai:ri.conicet.gov.ar:11336/75898
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Direct observation of coherent energy transfer in nonlinear micromechanical oscillatorsChen, ChangyaoZanette, Damian HoracioCzaplewski, David A.Shaw, StevenLópez, DanielEnergy TransferMicromechanical OscillatorsSynchronizationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.Fil: Chen, Changyao. Argonne National Laboratory; Estados UnidosFil: Zanette, Damian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Czaplewski, David A.. Argonne National Laboratory; Estados UnidosFil: Shaw, Steven. Florida Institute of Technology; Estados UnidosFil: López, Daniel. Argonne National Laboratory; Estados UnidosNature Publishing Group2017-05-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75898Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel; Direct observation of coherent energy transfer in nonlinear micromechanical oscillators; Nature Publishing Group; Nature Communications; 8; 26-5-2017; 1-72041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms15523info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms15523info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:12:07Zoai:ri.conicet.gov.ar:11336/75898instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:12:08.219CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
title Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
spellingShingle Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
Chen, Changyao
Energy Transfer
Micromechanical Oscillators
Synchronization
title_short Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
title_full Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
title_fullStr Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
title_full_unstemmed Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
title_sort Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
dc.creator.none.fl_str_mv Chen, Changyao
Zanette, Damian Horacio
Czaplewski, David A.
Shaw, Steven
López, Daniel
author Chen, Changyao
author_facet Chen, Changyao
Zanette, Damian Horacio
Czaplewski, David A.
Shaw, Steven
López, Daniel
author_role author
author2 Zanette, Damian Horacio
Czaplewski, David A.
Shaw, Steven
López, Daniel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Energy Transfer
Micromechanical Oscillators
Synchronization
topic Energy Transfer
Micromechanical Oscillators
Synchronization
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
Fil: Chen, Changyao. Argonne National Laboratory; Estados Unidos
Fil: Zanette, Damian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Czaplewski, David A.. Argonne National Laboratory; Estados Unidos
Fil: Shaw, Steven. Florida Institute of Technology; Estados Unidos
Fil: López, Daniel. Argonne National Laboratory; Estados Unidos
description Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/75898
Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel; Direct observation of coherent energy transfer in nonlinear micromechanical oscillators; Nature Publishing Group; Nature Communications; 8; 26-5-2017; 1-7
2041-1723
CONICET Digital
CONICET
url http://hdl.handle.net/11336/75898
identifier_str_mv Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel; Direct observation of coherent energy transfer in nonlinear micromechanical oscillators; Nature Publishing Group; Nature Communications; 8; 26-5-2017; 1-7
2041-1723
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms15523
info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms15523
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782516268105728
score 12.982451