Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
- Autores
- Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
Fil: Chen, Changyao. Argonne National Laboratory; Estados Unidos
Fil: Zanette, Damian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Czaplewski, David A.. Argonne National Laboratory; Estados Unidos
Fil: Shaw, Steven. Florida Institute of Technology; Estados Unidos
Fil: López, Daniel. Argonne National Laboratory; Estados Unidos - Materia
-
Energy Transfer
Micromechanical Oscillators
Synchronization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75898
Ver los metadatos del registro completo
id |
CONICETDig_b92f32c510ec73e791c19be455972382 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75898 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillatorsChen, ChangyaoZanette, Damian HoracioCzaplewski, David A.Shaw, StevenLópez, DanielEnergy TransferMicromechanical OscillatorsSynchronizationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.Fil: Chen, Changyao. Argonne National Laboratory; Estados UnidosFil: Zanette, Damian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Czaplewski, David A.. Argonne National Laboratory; Estados UnidosFil: Shaw, Steven. Florida Institute of Technology; Estados UnidosFil: López, Daniel. Argonne National Laboratory; Estados UnidosNature Publishing Group2017-05-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75898Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel; Direct observation of coherent energy transfer in nonlinear micromechanical oscillators; Nature Publishing Group; Nature Communications; 8; 26-5-2017; 1-72041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms15523info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms15523info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:12:07Zoai:ri.conicet.gov.ar:11336/75898instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:12:08.219CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators |
title |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators |
spellingShingle |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators Chen, Changyao Energy Transfer Micromechanical Oscillators Synchronization |
title_short |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators |
title_full |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators |
title_fullStr |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators |
title_full_unstemmed |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators |
title_sort |
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators |
dc.creator.none.fl_str_mv |
Chen, Changyao Zanette, Damian Horacio Czaplewski, David A. Shaw, Steven López, Daniel |
author |
Chen, Changyao |
author_facet |
Chen, Changyao Zanette, Damian Horacio Czaplewski, David A. Shaw, Steven López, Daniel |
author_role |
author |
author2 |
Zanette, Damian Horacio Czaplewski, David A. Shaw, Steven López, Daniel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Energy Transfer Micromechanical Oscillators Synchronization |
topic |
Energy Transfer Micromechanical Oscillators Synchronization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance. Fil: Chen, Changyao. Argonne National Laboratory; Estados Unidos Fil: Zanette, Damian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Czaplewski, David A.. Argonne National Laboratory; Estados Unidos Fil: Shaw, Steven. Florida Institute of Technology; Estados Unidos Fil: López, Daniel. Argonne National Laboratory; Estados Unidos |
description |
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75898 Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel; Direct observation of coherent energy transfer in nonlinear micromechanical oscillators; Nature Publishing Group; Nature Communications; 8; 26-5-2017; 1-7 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75898 |
identifier_str_mv |
Chen, Changyao; Zanette, Damian Horacio; Czaplewski, David A.; Shaw, Steven; López, Daniel; Direct observation of coherent energy transfer in nonlinear micromechanical oscillators; Nature Publishing Group; Nature Communications; 8; 26-5-2017; 1-7 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms15523 info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms15523 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782516268105728 |
score |
12.982451 |