A unified point of view on boundedness of Riesz type potentials
- Autores
- Iaffei, Bibiana Raquel; Nitti, Rosa Liliana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a natural extension of the Riesz potentials to quasimetricmeasure spaces with an upper doubling measure. In particular, theseoperators are defined when the underlying space has components of differingdimensions. We study the behavior of the potential on classical and variableexponent Lebesgue spaces, obtaining necessary and sufficient conditions forits boundedness. The technique we use relies on a geometric property ofthe measure of the balls which holds both in the doubling and non-doublingsituations, and allows us to present our results in a unified way.
Fil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nitti, Rosa Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Operators on function spaces
Function spaces arising in harmonic analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68091
Ver los metadatos del registro completo
id |
CONICETDig_b8ffeaf0c107915420db7db534b62bb8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68091 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A unified point of view on boundedness of Riesz type potentialsIaffei, Bibiana RaquelNitti, Rosa LilianaOperators on function spacesFunction spaces arising in harmonic analysishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a natural extension of the Riesz potentials to quasimetricmeasure spaces with an upper doubling measure. In particular, theseoperators are defined when the underlying space has components of differingdimensions. We study the behavior of the potential on classical and variableexponent Lebesgue spaces, obtaining necessary and sufficient conditions forits boundedness. The technique we use relies on a geometric property ofthe measure of the balls which holds both in the doubling and non-doublingsituations, and allows us to present our results in a unified way.Fil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nitti, Rosa Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUnión Matemática Argentina2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68091Iaffei, Bibiana Raquel; Nitti, Rosa Liliana; A unified point of view on boundedness of Riesz type potentials; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 1; 8-2018; 99-1210041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v59n1/v59n1a05.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:26:48Zoai:ri.conicet.gov.ar:11336/68091instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:26:49.132CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A unified point of view on boundedness of Riesz type potentials |
title |
A unified point of view on boundedness of Riesz type potentials |
spellingShingle |
A unified point of view on boundedness of Riesz type potentials Iaffei, Bibiana Raquel Operators on function spaces Function spaces arising in harmonic analysis |
title_short |
A unified point of view on boundedness of Riesz type potentials |
title_full |
A unified point of view on boundedness of Riesz type potentials |
title_fullStr |
A unified point of view on boundedness of Riesz type potentials |
title_full_unstemmed |
A unified point of view on boundedness of Riesz type potentials |
title_sort |
A unified point of view on boundedness of Riesz type potentials |
dc.creator.none.fl_str_mv |
Iaffei, Bibiana Raquel Nitti, Rosa Liliana |
author |
Iaffei, Bibiana Raquel |
author_facet |
Iaffei, Bibiana Raquel Nitti, Rosa Liliana |
author_role |
author |
author2 |
Nitti, Rosa Liliana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Operators on function spaces Function spaces arising in harmonic analysis |
topic |
Operators on function spaces Function spaces arising in harmonic analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a natural extension of the Riesz potentials to quasimetricmeasure spaces with an upper doubling measure. In particular, theseoperators are defined when the underlying space has components of differingdimensions. We study the behavior of the potential on classical and variableexponent Lebesgue spaces, obtaining necessary and sufficient conditions forits boundedness. The technique we use relies on a geometric property ofthe measure of the balls which holds both in the doubling and non-doublingsituations, and allows us to present our results in a unified way. Fil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Nitti, Rosa Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We introduce a natural extension of the Riesz potentials to quasimetricmeasure spaces with an upper doubling measure. In particular, theseoperators are defined when the underlying space has components of differingdimensions. We study the behavior of the potential on classical and variableexponent Lebesgue spaces, obtaining necessary and sufficient conditions forits boundedness. The technique we use relies on a geometric property ofthe measure of the balls which holds both in the doubling and non-doublingsituations, and allows us to present our results in a unified way. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68091 Iaffei, Bibiana Raquel; Nitti, Rosa Liliana; A unified point of view on boundedness of Riesz type potentials; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 1; 8-2018; 99-121 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68091 |
identifier_str_mv |
Iaffei, Bibiana Raquel; Nitti, Rosa Liliana; A unified point of view on boundedness of Riesz type potentials; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 59; 1; 8-2018; 99-121 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v59n1/v59n1a05.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083410692407296 |
score |
13.22299 |