Noncommutativity in (2+1)-dimensions and the Lorentz group
- Autores
- Falomir, Horacio Alberto; Vega, Federico Gaspar; Gamboa, Jorge; Mendez, Fernando; Loewe, Marcelo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrödinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp's shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to noncommutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. © 2012 American Physical Society.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Vega, Federico Gaspar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gamboa, Jorge. Universidad de Santiago de Chile; Chile
Fil: Mendez, Fernando. Universidad de Santiago de Chile; Chile
Fil: Loewe, Marcelo. Centre For Theoretical Physics And Mathematical Physics; Chile - Materia
-
Noncommutative space
Lorentz Group
Quantum Mechanics Model
Landau Problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/74566
Ver los metadatos del registro completo
id |
CONICETDig_b8c80862c372a3bcb9316b6569169bb9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/74566 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Noncommutativity in (2+1)-dimensions and the Lorentz groupFalomir, Horacio AlbertoVega, Federico GasparGamboa, JorgeMendez, FernandoLoewe, MarceloNoncommutative spaceLorentz GroupQuantum Mechanics ModelLandau Problemhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrödinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp's shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to noncommutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. © 2012 American Physical Society.Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Vega, Federico Gaspar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Gamboa, Jorge. Universidad de Santiago de Chile; ChileFil: Mendez, Fernando. Universidad de Santiago de Chile; ChileFil: Loewe, Marcelo. Centre For Theoretical Physics And Mathematical Physics; ChileAmerican Physical Society2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74566Falomir, Horacio Alberto; Vega, Federico Gaspar; Gamboa, Jorge; Mendez, Fernando; Loewe, Marcelo ; Noncommutativity in (2+1)-dimensions and the Lorentz group; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 86; 10; 11-20120556-2821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.86.105035info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.105035info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:42Zoai:ri.conicet.gov.ar:11336/74566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:43.074CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Noncommutativity in (2+1)-dimensions and the Lorentz group |
title |
Noncommutativity in (2+1)-dimensions and the Lorentz group |
spellingShingle |
Noncommutativity in (2+1)-dimensions and the Lorentz group Falomir, Horacio Alberto Noncommutative space Lorentz Group Quantum Mechanics Model Landau Problem |
title_short |
Noncommutativity in (2+1)-dimensions and the Lorentz group |
title_full |
Noncommutativity in (2+1)-dimensions and the Lorentz group |
title_fullStr |
Noncommutativity in (2+1)-dimensions and the Lorentz group |
title_full_unstemmed |
Noncommutativity in (2+1)-dimensions and the Lorentz group |
title_sort |
Noncommutativity in (2+1)-dimensions and the Lorentz group |
dc.creator.none.fl_str_mv |
Falomir, Horacio Alberto Vega, Federico Gaspar Gamboa, Jorge Mendez, Fernando Loewe, Marcelo |
author |
Falomir, Horacio Alberto |
author_facet |
Falomir, Horacio Alberto Vega, Federico Gaspar Gamboa, Jorge Mendez, Fernando Loewe, Marcelo |
author_role |
author |
author2 |
Vega, Federico Gaspar Gamboa, Jorge Mendez, Fernando Loewe, Marcelo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Noncommutative space Lorentz Group Quantum Mechanics Model Landau Problem |
topic |
Noncommutative space Lorentz Group Quantum Mechanics Model Landau Problem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrödinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp's shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to noncommutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. © 2012 American Physical Society. Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Vega, Federico Gaspar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Gamboa, Jorge. Universidad de Santiago de Chile; Chile Fil: Mendez, Fernando. Universidad de Santiago de Chile; Chile Fil: Loewe, Marcelo. Centre For Theoretical Physics And Mathematical Physics; Chile |
description |
In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrödinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp's shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to noncommutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. © 2012 American Physical Society. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/74566 Falomir, Horacio Alberto; Vega, Federico Gaspar; Gamboa, Jorge; Mendez, Fernando; Loewe, Marcelo ; Noncommutativity in (2+1)-dimensions and the Lorentz group; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 86; 10; 11-2012 0556-2821 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/74566 |
identifier_str_mv |
Falomir, Horacio Alberto; Vega, Federico Gaspar; Gamboa, Jorge; Mendez, Fernando; Loewe, Marcelo ; Noncommutativity in (2+1)-dimensions and the Lorentz group; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 86; 10; 11-2012 0556-2821 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.86.105035 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.105035 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614206339416064 |
score |
13.070432 |