pyMBE: The Python-based molecule builder for ESPResSo
- Autores
- Beyer, David; Torres, Paola Beatriz; Pineda, Sebastian P.; Narambuena, Claudio Fabian; Grad, Jean Noël; Košovan, Peter; Blanco, Pablo M.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article.
Fil: Beyer, David. University of Stuttgart; Alemania
Fil: Torres, Paola Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; Argentina
Fil: Pineda, Sebastian P.. Charles University; República Checa
Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; Argentina
Fil: Grad, Jean Noël. University of Stuttgart; Alemania
Fil: Košovan, Peter. Norwegian University of Life Sciences; Noruega
Fil: Blanco, Pablo M.. Norwegian University of Science and Technology; Noruega - Materia
-
Protein
ESPResSo
Peptide
Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/262682
Ver los metadatos del registro completo
id |
CONICETDig_b8bdee334c3e5ab492479126ca460b57 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/262682 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
pyMBE: The Python-based molecule builder for ESPResSoBeyer, DavidTorres, Paola BeatrizPineda, Sebastian P.Narambuena, Claudio FabianGrad, Jean NoëlKošovan, PeterBlanco, Pablo M.ProteinESPResSoPeptideSimulationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article.Fil: Beyer, David. University of Stuttgart; AlemaniaFil: Torres, Paola Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; ArgentinaFil: Pineda, Sebastian P.. Charles University; República ChecaFil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; ArgentinaFil: Grad, Jean Noël. University of Stuttgart; AlemaniaFil: Košovan, Peter. Norwegian University of Life Sciences; NoruegaFil: Blanco, Pablo M.. Norwegian University of Science and Technology; NoruegaAmerican Institute of Physics2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262682Beyer, David; Torres, Paola Beatriz; Pineda, Sebastian P.; Narambuena, Claudio Fabian; Grad, Jean Noël; et al.; pyMBE: The Python-based molecule builder for ESPResSo; American Institute of Physics; Journal of Chemical Physics; 161; 2; 7-2024; 1-210021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/161/2/022502/3303328/pyMBE-The-Python-based-molecule-builder-forinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0216389info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:35Zoai:ri.conicet.gov.ar:11336/262682instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:35.752CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
pyMBE: The Python-based molecule builder for ESPResSo |
title |
pyMBE: The Python-based molecule builder for ESPResSo |
spellingShingle |
pyMBE: The Python-based molecule builder for ESPResSo Beyer, David Protein ESPResSo Peptide Simulation |
title_short |
pyMBE: The Python-based molecule builder for ESPResSo |
title_full |
pyMBE: The Python-based molecule builder for ESPResSo |
title_fullStr |
pyMBE: The Python-based molecule builder for ESPResSo |
title_full_unstemmed |
pyMBE: The Python-based molecule builder for ESPResSo |
title_sort |
pyMBE: The Python-based molecule builder for ESPResSo |
dc.creator.none.fl_str_mv |
Beyer, David Torres, Paola Beatriz Pineda, Sebastian P. Narambuena, Claudio Fabian Grad, Jean Noël Košovan, Peter Blanco, Pablo M. |
author |
Beyer, David |
author_facet |
Beyer, David Torres, Paola Beatriz Pineda, Sebastian P. Narambuena, Claudio Fabian Grad, Jean Noël Košovan, Peter Blanco, Pablo M. |
author_role |
author |
author2 |
Torres, Paola Beatriz Pineda, Sebastian P. Narambuena, Claudio Fabian Grad, Jean Noël Košovan, Peter Blanco, Pablo M. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Protein ESPResSo Peptide Simulation |
topic |
Protein ESPResSo Peptide Simulation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article. Fil: Beyer, David. University of Stuttgart; Alemania Fil: Torres, Paola Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; Argentina Fil: Pineda, Sebastian P.. Charles University; República Checa Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; Argentina Fil: Grad, Jean Noël. University of Stuttgart; Alemania Fil: Košovan, Peter. Norwegian University of Life Sciences; Noruega Fil: Blanco, Pablo M.. Norwegian University of Science and Technology; Noruega |
description |
We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/262682 Beyer, David; Torres, Paola Beatriz; Pineda, Sebastian P.; Narambuena, Claudio Fabian; Grad, Jean Noël; et al.; pyMBE: The Python-based molecule builder for ESPResSo; American Institute of Physics; Journal of Chemical Physics; 161; 2; 7-2024; 1-21 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/262682 |
identifier_str_mv |
Beyer, David; Torres, Paola Beatriz; Pineda, Sebastian P.; Narambuena, Claudio Fabian; Grad, Jean Noël; et al.; pyMBE: The Python-based molecule builder for ESPResSo; American Institute of Physics; Journal of Chemical Physics; 161; 2; 7-2024; 1-21 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/161/2/022502/3303328/pyMBE-The-Python-based-molecule-builder-for info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0216389 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613341278896128 |
score |
13.070432 |