20 years of ordinal patterns: Perspectives and challenges
- Autores
- Leyva, Inmaculada; Martínez, Johann H.; Masoller, Cristina; Rosso, Osvaldo Anibal; Zanin, Massimiliano
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In 2002, in a seminal article, Bandt and Pompe proposed a new methodology for the analysis of complex time series, now known as Ordinal Analysis. The ordinal methodology is based on the computation of symbols (known as ordinal patters) which are defined in terms of the temporal ordering of data points in a time series, and whose probabilities are known as ordinal probabilities. With the ordinal probabilities the Shannon entropy can be calculated, which is the permutation entropy. Since it was proposed, the ordinal method has found applications in fields as diverse as biomedicine and climatology. However, some properties of ordinal probabilities are still not fully understood, and how to combine the ordinal approach of feature extraction with machine learning techniques for model identification, time series classification or forecasting, remains a challenge. The objective of this perspective article is to present some recent advances and to discuss some open problems.
Fil: Leyva, Inmaculada. Universidad Rey Juan Carlos; España. Universidad Politécnica de Madrid; España
Fil: Martínez, Johann H.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España
Fil: Masoller, Cristina. Universidad Politécnica de Catalunya; España
Fil: Rosso, Osvaldo Anibal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zanin, Massimiliano. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España - Materia
-
biomedicine
climatology
feature extraction
open problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213573
Ver los metadatos del registro completo
id |
CONICETDig_b8aa99a5f612d95f277abaeaf4731bcf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213573 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
20 years of ordinal patterns: Perspectives and challengesLeyva, InmaculadaMartínez, Johann H.Masoller, CristinaRosso, Osvaldo AnibalZanin, Massimilianobiomedicineclimatologyfeature extractionopen problemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In 2002, in a seminal article, Bandt and Pompe proposed a new methodology for the analysis of complex time series, now known as Ordinal Analysis. The ordinal methodology is based on the computation of symbols (known as ordinal patters) which are defined in terms of the temporal ordering of data points in a time series, and whose probabilities are known as ordinal probabilities. With the ordinal probabilities the Shannon entropy can be calculated, which is the permutation entropy. Since it was proposed, the ordinal method has found applications in fields as diverse as biomedicine and climatology. However, some properties of ordinal probabilities are still not fully understood, and how to combine the ordinal approach of feature extraction with machine learning techniques for model identification, time series classification or forecasting, remains a challenge. The objective of this perspective article is to present some recent advances and to discuss some open problems.Fil: Leyva, Inmaculada. Universidad Rey Juan Carlos; España. Universidad Politécnica de Madrid; EspañaFil: Martínez, Johann H.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; EspañaFil: Masoller, Cristina. Universidad Politécnica de Catalunya; EspañaFil: Rosso, Osvaldo Anibal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zanin, Massimiliano. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; EspañaEurophysics Letters2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213573Leyva, Inmaculada; Martínez, Johann H.; Masoller, Cristina; Rosso, Osvaldo Anibal; Zanin, Massimiliano; 20 years of ordinal patterns: Perspectives and challenges; Europhysics Letters; Europhysics Letters; 138; 3; 5-2022; 1-80295-5075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/ac6a72info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/ac6a72info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:56Zoai:ri.conicet.gov.ar:11336/213573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:56.523CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
20 years of ordinal patterns: Perspectives and challenges |
title |
20 years of ordinal patterns: Perspectives and challenges |
spellingShingle |
20 years of ordinal patterns: Perspectives and challenges Leyva, Inmaculada biomedicine climatology feature extraction open problems |
title_short |
20 years of ordinal patterns: Perspectives and challenges |
title_full |
20 years of ordinal patterns: Perspectives and challenges |
title_fullStr |
20 years of ordinal patterns: Perspectives and challenges |
title_full_unstemmed |
20 years of ordinal patterns: Perspectives and challenges |
title_sort |
20 years of ordinal patterns: Perspectives and challenges |
dc.creator.none.fl_str_mv |
Leyva, Inmaculada Martínez, Johann H. Masoller, Cristina Rosso, Osvaldo Anibal Zanin, Massimiliano |
author |
Leyva, Inmaculada |
author_facet |
Leyva, Inmaculada Martínez, Johann H. Masoller, Cristina Rosso, Osvaldo Anibal Zanin, Massimiliano |
author_role |
author |
author2 |
Martínez, Johann H. Masoller, Cristina Rosso, Osvaldo Anibal Zanin, Massimiliano |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
biomedicine climatology feature extraction open problems |
topic |
biomedicine climatology feature extraction open problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In 2002, in a seminal article, Bandt and Pompe proposed a new methodology for the analysis of complex time series, now known as Ordinal Analysis. The ordinal methodology is based on the computation of symbols (known as ordinal patters) which are defined in terms of the temporal ordering of data points in a time series, and whose probabilities are known as ordinal probabilities. With the ordinal probabilities the Shannon entropy can be calculated, which is the permutation entropy. Since it was proposed, the ordinal method has found applications in fields as diverse as biomedicine and climatology. However, some properties of ordinal probabilities are still not fully understood, and how to combine the ordinal approach of feature extraction with machine learning techniques for model identification, time series classification or forecasting, remains a challenge. The objective of this perspective article is to present some recent advances and to discuss some open problems. Fil: Leyva, Inmaculada. Universidad Rey Juan Carlos; España. Universidad Politécnica de Madrid; España Fil: Martínez, Johann H.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España Fil: Masoller, Cristina. Universidad Politécnica de Catalunya; España Fil: Rosso, Osvaldo Anibal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zanin, Massimiliano. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España |
description |
In 2002, in a seminal article, Bandt and Pompe proposed a new methodology for the analysis of complex time series, now known as Ordinal Analysis. The ordinal methodology is based on the computation of symbols (known as ordinal patters) which are defined in terms of the temporal ordering of data points in a time series, and whose probabilities are known as ordinal probabilities. With the ordinal probabilities the Shannon entropy can be calculated, which is the permutation entropy. Since it was proposed, the ordinal method has found applications in fields as diverse as biomedicine and climatology. However, some properties of ordinal probabilities are still not fully understood, and how to combine the ordinal approach of feature extraction with machine learning techniques for model identification, time series classification or forecasting, remains a challenge. The objective of this perspective article is to present some recent advances and to discuss some open problems. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213573 Leyva, Inmaculada; Martínez, Johann H.; Masoller, Cristina; Rosso, Osvaldo Anibal; Zanin, Massimiliano; 20 years of ordinal patterns: Perspectives and challenges; Europhysics Letters; Europhysics Letters; 138; 3; 5-2022; 1-8 0295-5075 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213573 |
identifier_str_mv |
Leyva, Inmaculada; Martínez, Johann H.; Masoller, Cristina; Rosso, Osvaldo Anibal; Zanin, Massimiliano; 20 years of ordinal patterns: Perspectives and challenges; Europhysics Letters; Europhysics Letters; 138; 3; 5-2022; 1-8 0295-5075 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/ac6a72 info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/ac6a72 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Europhysics Letters |
publisher.none.fl_str_mv |
Europhysics Letters |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614307455696896 |
score |
13.070432 |