Black hole non-modal linear stability: The Schwarzschild (A)dS cases
- Autores
- Dotti, Gustavo Daniel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The non-modal linear stability of the Schwarzschild black hole established in Dotti (2014 Phys. Rev. Lett. 112 191101) is generalized to the case of a non-negative cosmological constant Λ. Two gauge invariant combinations G± of perturbed scalars made out of the Weyl tensor and its first covariant derivative are found such that the map with domain the set of equivalent classes under gauge transformations of solutions of the linearized Einstein's equation, is invertible. The way to reconstruct a representative of in terms of is given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, and are bounded in the the outer static region. At large times, the perturbation decays leaving a linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution. For negative cosmological constant it is shown that there are choices of boundary conditions at the time-like boundary under which the Schwarzschild anti de Sitter black hole is unstable. The root of Chandrasekhar's duality relating odd and even modes is exhibited, and some technicalities related to this duality and omitted in the original proof of the case are explained in detail.
Fil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
BLACK HOLES
LINEAR STABILITY
MEASURABLE EFFECTS OF PERTURBATIONS
NON-MODAL APPROACH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/73291
Ver los metadatos del registro completo
id |
CONICETDig_b845407e031ecae1f59c2cff510b9dc3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/73291 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Black hole non-modal linear stability: The Schwarzschild (A)dS casesDotti, Gustavo DanielBLACK HOLESLINEAR STABILITYMEASURABLE EFFECTS OF PERTURBATIONSNON-MODAL APPROACHhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The non-modal linear stability of the Schwarzschild black hole established in Dotti (2014 Phys. Rev. Lett. 112 191101) is generalized to the case of a non-negative cosmological constant Λ. Two gauge invariant combinations G± of perturbed scalars made out of the Weyl tensor and its first covariant derivative are found such that the map with domain the set of equivalent classes under gauge transformations of solutions of the linearized Einstein's equation, is invertible. The way to reconstruct a representative of in terms of is given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, and are bounded in the the outer static region. At large times, the perturbation decays leaving a linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution. For negative cosmological constant it is shown that there are choices of boundary conditions at the time-like boundary under which the Schwarzschild anti de Sitter black hole is unstable. The root of Chandrasekhar's duality relating odd and even modes is exhibited, and some technicalities related to this duality and omitted in the original proof of the case are explained in detail.Fil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaIOP Publishing2016-09-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73291Dotti, Gustavo Daniel; Black hole non-modal linear stability: The Schwarzschild (A)dS cases; IOP Publishing; Classical and Quantum Gravity; 33; 20; 21-9-2016; 1-430264-93811361-6382CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/33/20/205005info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1603.03749info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0264-9381/33/20/205005/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:54:46Zoai:ri.conicet.gov.ar:11336/73291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:54:46.91CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases |
title |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases |
spellingShingle |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases Dotti, Gustavo Daniel BLACK HOLES LINEAR STABILITY MEASURABLE EFFECTS OF PERTURBATIONS NON-MODAL APPROACH |
title_short |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases |
title_full |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases |
title_fullStr |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases |
title_full_unstemmed |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases |
title_sort |
Black hole non-modal linear stability: The Schwarzschild (A)dS cases |
dc.creator.none.fl_str_mv |
Dotti, Gustavo Daniel |
author |
Dotti, Gustavo Daniel |
author_facet |
Dotti, Gustavo Daniel |
author_role |
author |
dc.subject.none.fl_str_mv |
BLACK HOLES LINEAR STABILITY MEASURABLE EFFECTS OF PERTURBATIONS NON-MODAL APPROACH |
topic |
BLACK HOLES LINEAR STABILITY MEASURABLE EFFECTS OF PERTURBATIONS NON-MODAL APPROACH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The non-modal linear stability of the Schwarzschild black hole established in Dotti (2014 Phys. Rev. Lett. 112 191101) is generalized to the case of a non-negative cosmological constant Λ. Two gauge invariant combinations G± of perturbed scalars made out of the Weyl tensor and its first covariant derivative are found such that the map with domain the set of equivalent classes under gauge transformations of solutions of the linearized Einstein's equation, is invertible. The way to reconstruct a representative of in terms of is given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, and are bounded in the the outer static region. At large times, the perturbation decays leaving a linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution. For negative cosmological constant it is shown that there are choices of boundary conditions at the time-like boundary under which the Schwarzschild anti de Sitter black hole is unstable. The root of Chandrasekhar's duality relating odd and even modes is exhibited, and some technicalities related to this duality and omitted in the original proof of the case are explained in detail. Fil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
The non-modal linear stability of the Schwarzschild black hole established in Dotti (2014 Phys. Rev. Lett. 112 191101) is generalized to the case of a non-negative cosmological constant Λ. Two gauge invariant combinations G± of perturbed scalars made out of the Weyl tensor and its first covariant derivative are found such that the map with domain the set of equivalent classes under gauge transformations of solutions of the linearized Einstein's equation, is invertible. The way to reconstruct a representative of in terms of is given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, and are bounded in the the outer static region. At large times, the perturbation decays leaving a linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution. For negative cosmological constant it is shown that there are choices of boundary conditions at the time-like boundary under which the Schwarzschild anti de Sitter black hole is unstable. The root of Chandrasekhar's duality relating odd and even modes is exhibited, and some technicalities related to this duality and omitted in the original proof of the case are explained in detail. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/73291 Dotti, Gustavo Daniel; Black hole non-modal linear stability: The Schwarzschild (A)dS cases; IOP Publishing; Classical and Quantum Gravity; 33; 20; 21-9-2016; 1-43 0264-9381 1361-6382 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/73291 |
identifier_str_mv |
Dotti, Gustavo Daniel; Black hole non-modal linear stability: The Schwarzschild (A)dS cases; IOP Publishing; Classical and Quantum Gravity; 33; 20; 21-9-2016; 1-43 0264-9381 1361-6382 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/33/20/205005 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1603.03749 info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0264-9381/33/20/205005/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782247437336576 |
score |
12.982451 |